Placement of Parallel Applications According to the Topology and
the Affinity
PhD Defense

Francois Tessier
Emmanuel Jeannot - Guillaume Mercier

Inria - LaBRI - University of Bordeaux

January 26, 2015

7 s e ® universite
VL0007 “BORDEAUX

1/56

Context
o

Simulations

Figure: Heart modelling

Computer simulation: one of the pillar of
science and industry

m Climate simulation, heart modelling,
cosmology, etc.

Large needs of performance

m The Human Brain Project goes after at
least 1 ExaFLOPS (108 FLOPS) to
simulate the brain’s neurons

Main challenge: scale these applications

More parallelization is the only way to
meet these requirements

Implies massively parallel supercomputers

2/56

Context
(]

Supercomputers

» Growth of supercomputers to
meet the performance needs

#Nodes Cores/Node
2011 ~ 20K 12
2012 ~ 10K — 100K 16 - 32
2015 ~ 5K — 50K 100 - 1 000
2018 ~ 100K — 1000K 1 000 - 10 000

Source: European Exascale Software
Intiative.

» The Blue Waters example
m More than 400 000 cores

m Spread to 27 000 nodes Figure: The Blue Waters platform
m Peak performance: 13.34
PetaFLOPS

3/56

Context
[Je]

Complex architectures

» Price to pay for the users: topologies

are more and more complex

» Complexity of interconnection

networks

~

\

» Memory hierarchy leading to more
NUMA effects
m Thermal issues for memory banks
m Gap increasing between the
processor and memory performance

Performance rate
Processor +60%/y
Memory +10%/y

m Not only a power issue but also a
bandwidth issue

Figure: Typical architecture in HPC

4/56

Context
oe

Outline

@ Context
© Problems
@ Static placement

© Dynamic placement

@ Conclusion

5/56

Problems

Outline

© Problems

6/56

Problems
[]

Data Locality

» More interesting to access the
nearest level in the hierarchy

» Definition: distance in hops
between a processing entity
and the data to which it needs
to access

Figure: Data Locality

How to control data locality?
» Locality-aware applications
» Data structures

» Locality-aware languages and compilers
» Data locality in runtime systems

® Runtime improvement
= Execution of applications

7/56

Problems
o

Execution of applications: the placement issue

» One of the levers to optimize the execution of applications: Application
placement

Two assessments

» Amount of data exchanged between application entities not homogeneous

Communication pattern

150407

1.00407

Receiver rank

5.00406

0.0e+00

Sender rank

8/56

Problems
o

Execution of applications: the placement issue

» One of the levers to optimize the execution of applications: Application
placement

Two assessments

» Amount of data exchanged between application entities not homogeneous
» Hardware: several levels of hierarchy with various performance
m Cache hierarchy, memory bus, high-performance network, etc.

Bandwidth according to transmitted bytes
Intel Xeon E5345
9000 T T
8000 || Inter-nodes
RAM shared ——
7000 |
6000 L L3 shared —»—

5000
4000 -
3000
2000
1000

Bandwidth in MBps

0 L
0.001 0.01 0.1 1 10 100 1000 10000
Message size (in KB)

=

(a) Higher is better (b) Topology tree

9/56

Problems
o

Execution of applications: the placement issue

» One of the levers to optimize the execution of applications: Application
placement
Two assessments

» Amount of data exchanged between application entities not homogeneous
» Hardware: several levels of hierarchy with various performance
m Cache hierarchy, memory bus, high-performance network, etc.

— Placement policy has an impact on performance

n: amount of communication

10/56

Problems
[]

Expected issues

» Placement of parallel applications is a well-known problem
» But encountering scaling issues

m Amount of memory per core decreasing
m Accumulation of NUMA effects
m More and more memory/communication-bound applications

2011 2012 2015 2018
#Nodes ~ 20K ~ 10K — 100K ~ 5K — 50K ~ 100K — 1000K
Cores/Node 12 16 - 32 100 - 1 000 1 000 - 10 000
Memory (PB) 0.3 0.3-0.5 5 32 - 64
GB RAM/Core 05-4 05-2 02-1 0.1-0.5

Table: Source: European Exascale Software Intiative.

General problems tackled in the PhD thesis

How to take into account data locality for large-scale platforms?

» Too much parallelism to apply application placement by hand
» Development of architectures, all very different
» Need an algorithmic solution considering the hardware characteristics

11 /56

Problems
L]

Placement of parallel applications

» How does the application behave?
m 1: Affinity

» What is the underlying architecture?
m 2: Topology (tree)

» What is the goal?
= 3: Objective function

1: Affinity
% \ 3: Objective function Placement
DistComm(c) 0 =(0,3,1,4,2,5)
2: Topology

£ |~

12/56

Problems
[]

1: Affinity

1: Affinity

» Definition: relation between two processing %

entities according to one or more criteria.

» Possible metrics:
= Amount of communication (e.g. number of messages exchanged)
1/O (e.g. amount of data to write on disk)
Memory access (e.g. data locality in physical memory banks)
etc.

Figure: Affinity pattern (graph) between processing entities

13/56

Problems
[]

1: Affinity

1: Affinity

» Definition: relation between two processing %
entities according to one or more criteria.
» Possible metrics:
= Amount of communication (e.g. number of messages exchanged)
1/O (e.g. amount of data to write on disk)

Memory access (e.g. data locality in physical memory banks)
etc.

» Solutions to gather this affinity pattern

m Instrumented versions of runtime implementations (e.g. Open MPI)
Natively in runtimes (e.g. Charm++)

Trace tools (e.g. Eztrace)

Simulation (e.g. SimGrid)

Static analysis of the application

Data partitioning

Skeleton of the application

14 /56

Problems
[]

2: Topology

2: Topology

» Gather topology information
m No standard means to retrieve this i(E

» hwloc is a solution
m Abstracts the architecture’s characteristics
m Shows the structure but what about the

costs?

Machine (24GB)
[NumANode P#0 (12G8) [NuMANode P#1 (12GB) |
Socket P#1 Socket P#0
‘ L3 (8192KB) ‘ ‘ L3 (8192KB)
‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) ‘ ‘ L2 (256KB) H L2 (256KB) H L2 (256KB) ‘ ‘ L2 (256KB)
‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ ‘ L1d (32KB) ‘ L1d (32KB) H L1d (32KB) H L1d (32KB) ‘ ‘ L1d (32KB) ‘
Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1 Core P#2 Core P#3
‘ PU P#0 ‘ ‘ PU P#2 ‘ ‘ PU P#4 ‘ ‘ PU P#6 ‘ ‘ PU P#1 ‘ ‘ PU P#3 ‘ ‘ PU P#5 ‘ ‘ PU P#7 ‘

Figure: Hardware topology of an Intel Xeon X5550 architecture

15 /56

Problems
[]

2: Topology

2: Topology

» Gather topology information
m No standard means to retrieve this
» hwloc is a solution
m Abstracts the architecture’s characteristics
m Shows the structure but what about the
costs?
» Topology modelling: quantitative or qualitative approach?
m Qualitative: structural information (provided by hwloc)

m Quantitative: weighted topology

Bandwidth according to transmitted bytes
Intel Xeon E5345

T T T T

T T
8000 || Inter-nodes -
RAM shared Mo\

L3 shared —=—

Bandwidth in MBps
N
o
o
o
T
‘l

0 ks L
0.001 0.01 0.1 1 10 100 1000 10000

Message size (in KB) 16 / 56

Problems
]

3: Objective function

v

What do we would like to optimize?
3: Objective function

v

As input:

m A= (Va,wa) the affinity graph with
® Vj: the processing entities
® wa(u, v): an affinity metric

m H = (Vy,wpy) the topology tree
e V}: the topology nodes
® wpy(u, v) the weight of the topology's

edges

DistComm(c)

v

Application placement: o : Va4 — Vy
DistComm(c) : Amount of data weighted by the crossed distance in tree

m Qualitative approach
m Tree topology only

v

» DistComm(c) =Z x2+Y x4+ X x6

17 /56

Problems
]

3: Objective function

v

What do we would like to optimize?
3: Objective function

v

As input:
m A= (Va,wa) the affinity graph with
® Vj: the processing entities
® wa(u, v): an affinity metric
m H = (Vy,wpy) the topology tree

e V}: the topology nodes
® wpy(u, v) the weight of the topology's
edges

DistComm(c)

v

Application placement: o : Va4 — Vy
DistComm(c) : Amount of data weighted by the crossed distance in tree

m Qualitative approach
m Tree topology only

v

» DistComm(c) =Z x2+Y x4+ X x6
m Z : Amount of data going through the level 2

18 /56

Problems
]

3: Objective function

v

What do we would like to optimize?
3: Objective function

v

As input:
m A= (Va,wa) the affinity graph with
® Vj: the processing entities
® wa(u, v): an affinity metric
m H = (Vy,wpy) the topology tree

e V}: the topology nodes
® wpy(u, v) the weight of the topology's
edges

DistComm(c)

v

Application placement: o : Va4 — Vy
DistComm(c) : Amount of data weighted by the crossed distance in tree

m Qualitative approach
m Tree topology only

v

» DistComm(c) =Z x2+Y x4+ X x6

m Z : Amount of data going through the level 2
m Y : Amount of data going through the level 1

10 /56

Problems
]

3: Objective function

v

What do we would like to optimize?
As input:
m A= (Va,wa) the affinity graph with
® Vj: the processing entities
® wa(u, v): an affinity metric
m H = (Vy,wpy) the topology tree
e V}: the topology nodes
® wpy(u, v) the weight of the topology's
edges

3: Objective function

v

DistComm(c)

v

Application placement: o : Va4 — Vy
DistComm(c) : Amount of data weighted by the crossed distance in tree

m Qualitative approach
m Tree topology only

v

» DistComm(c) =Z x2+Y x4+ X x6

m Z : Amount of data going through the level 2

m Y : Amount of data going through the level 1

m X : Amount of data going through the root

m We have proved that min DistComm(o) is
NP-Hard

20/56

Problems
[]

The TreeMatch algorithm

» Algorithm®'2 and environment to compute processing entities placement
based on their affinities and NUMA topology

» Requires tree topology, based on a qualitative approach

> Input:
m The affinity pattern of the application
m A model (tree) of the underlying architecture (qualitative approach)

> Output:

m A processes permutation o such that o; is the core number on which we
have to bind the process i

> Goal:
m min DistComm(o)

» Combinatorial complexity with optimality to 128 processing entities then
heuristic for larger input

1E. Jeannot and G. Mercier. “Near-optimal placement of MPI processes on hierarchical
NUMA architectures”. In: Euro-Par 2010-Parallel Processing (2010), pp. 199-210.
2Emmanuel Jeannot, Guillaume Mercier, and Francois Tessier. “Process Placement in
Multicore Clusters: Algorithmic Issues and Practical Techniques”. In: /EEE Transactions on
Parallel and Distributed Systems (2014).
21/56

Problems
]

Issues in application placement for large-scale platforms

Assessments
» Simulation applications need to scale on large and complex platforms
» Hierarchical hardware topologies

» Placement policy has an impact on performance

Problems: How to efficiently place parallel applications according to

the affinity and the topology?

Several tracks
» Static placement

m Proof of concept of TreeMatch on parallel platforms
m Understand the impact of placement of parallel applications (metrics, etc.)

» Dynamic placement

m Dynamically improve the data locality during the execution
m Temporality notion for affinity
m Combine the topology-aware placement with CPU load balancing

22/56

Static Placement

Outline

@ Static placement

23/56

Static Placement
[]

Static placement

Static placement
» Processing entities mapped at launch time on computing units
» One mapping for the application lifetime
Objectives
» Minimize execution time but: how?
» Evaluate the relevance of minimizing the communication costs

Contributions
» Proof of concept of TreeMatch for parallel platform

m Case study to evaluate the static application placement and the impact of
affinity metrics

» TreeMatch improvements

m Taking into consideration constraints
m Proof of the NP-Completeness of min DistComm(o)

24 /56

Toy example

Receiver rank

16x16 Communication pattern

Sender rank

Static Placement
L]

o =(0,2,8,10,4,

6,12,14,1,3,9,

11,5,7,13,15)
S

Receiver rank

- - {Camne]

16x16 Communication pattern

Sender rank

25 /56

Static Placement
L]

Toy example

16x16 Communication pattern

. o =(0,2,8,10,4, .

6,12,14,1,39, & —
3 . 11,5,7,13,15) | = .
==

T T
5 10 15 °q

Sender rank

Sender rank

26 /56

Static Placement
[]

State of the Art

» Graph partitionners are able to give a solution to the placement problem
» Scotch (6.0.0), Chaco (2.2) and ParMETIS (3.1.1): graph partitionners
» MPIPP: randomized algorithm

Methods Hardware Paradigm NUMA Network Qualitative Dynamic
independent independent effects approach topology
MPIPP V4 Vi Vi
Scotch v v Tree
Chaco v v V4
ParMETIS v V4 v v
LibTopoMap v v
Traff v v
TreeMatch vV v v Tree v v

» Comparison to hardware and paradigm independent methods

» Case study of a real application

27 /56

Static Placement
L]

» PlaFRIM cluster

m Nodes: Intel Xeon 5550 - 8 cores - 12 GB RAM
> ZeusMP/2

m CFD Application

m Irregular communication pattern

ZeusMP - 64 processes, msg metric — Baseline

60
|
1.5e+07

40

1.0e+07

30
|

Receiver rank

20
|

5.0e+06
|

T T T T T T
10 20 30 40 50 60

0.0e+00

Sender rank
28 /56

Static Placement
[]

Case study - Results

Execution time in seconds

200 300 400

100

Packed and Round Robin: standard strategies (Packed is the default
mapping in Open MPI)

» TreeMatch outperforms Packed and RR up to 25%
» Two versions of Scotch

m Scotch _w : weighting of the topology after benchmarking
m Scotch: Normalized weights
m TreeMatch slightly better or comparable

64 processes 128 processes 256 processes

800

600
1000

00

Execution time in seconds
5!

Execution time in seconds
400

e

200
TreeMatch -
[y
3
I
-
&
- EBE===—
0
.
o
.+
m

L o i I e L Lo S oL

S <3 e | s = o o | s < - ® 7 3

2§58 88k 5 8 § %880k § s S8+ 2205 8
5 8 57 4a = £ £ 8 g 57 a = £ 2 3 3 ¢ 7z =g 2 £

g & & £ £ 5 860 o & £ £ 506 38 8 & £§ ¢ 5% 83860

= a @ a o = a]
(a) 64 processes (b) 128 processes (c) 256 processes

20/56

Static Placement
L]

Case study - Communication distribution

» Impact of static placement on the amount of communication going
through the topology links
» ZeusMP/2 on 16 cores (2 nodes), one node depicted
m In thousand of messages exchanged

> A large amount of communication transferred to the subtrees

1427 1427 —41, 7%
425 713 713 407 425 713 713 407 718 718 718 718 700 700 709 709
débbddbbddbbddbb
(a) With default placement (b) With TreeMatch placement

30/56

Static Placement
[]

Mapping time for benchmarks (Sparse matrices)

» New heuristic for TreeMatch makes it to improve scalability beyond 128
processes

» Follow a linear curve on large cases

» Around 1 second to 128 processes then comparable to Scotch

Mapping time comparison between TreeMatch
and the other graph partitionners on large affinity patterns

100000 T T T
10000 ¢ X B
I ',“
€ 1000 F N
£ ,""
= *
o - -
£ 100 -
=] po
S 10 b g J
'% v +_* TreeMatch
g 1L 4 Scotch - |1
X ‘_.,-" Chaco —-+-
o [y MPIPP-1
1 E MPIPP-5 Ei
ParMETIS
0.01 L L L L
1 10 100 1000 10000 10000C

Number of processes

31/56

Static Placement
[]

Mapping time for benchmarks (Sparse matrices)

» New heuristic for TreeMatch makes it to improve scalability beyond 128
processes

» Follow a linear curve on large cases

» Around 1 second to 128 processes then comparable to Scotch

Mapping time comparison between TreeMatch
and the other graph partitionners on large affinity patterns

100000 T T T
10000 A} X E
m ' s
€ 1000 F pes B
c B
=] ’.-’
[L e -
£ 100) -
E=) pe
c 100 e]
'% ey +_* TreeMatch
g 1L 2 4 Scotch -1
X ._,,--0‘ Chaco —-+-—
o [_ya MPIPP-1
1r MPIPP-5 - (3 - []
ParMETIS
0.01 . . . T
1 10 100 1000 10000 10000C

Number of processes

e mapping time is a scalability constraint for d

32/56

Dynamic placement

Outline

© Dynamic placement

33/56

Dynamic placement
[]

Goals and programming model

Objectives
» Improve data locality dynamically
» Take advantage of load balancing systems to add a topology-aware
component
» Consider affinity temporality
Charm++

» Fine-grained paradigm: cooperating objects called chares
» Plugable load balancing algorithms at launch time
m Native Charm++ load balancers
= Quantitative topology-aware load balancers: NucolLB, HwTopolLB3
» Load balancers able to natively migrate chares
» Adaptive runtime system supplying chares and cores statistics (load,
affinity, etc.)
Contributions
» Two load balancers respectively for:
m Compute-bound applications
m Communication-bound applications

» Work in collaboration with the JLPC and the PPL

3Laércio L Pilla, Christiane Pousa Ribeiro, Daniel Cordeiro, Chao Mei, Abhinav Bhatele,
Philippe OA Navaux, Francois Broquedis, Jean-Francois Méhaut, and Laxmikant V Kale. “A
Hierarchical Approach for Load Balancing on Parallel Multi-core Systems”. In: Parallel
Processing (ICPP), 2012 41st International Conference on. IEEE. 2012, pp. 118-127. 34 /56

Dynamic placement

e0

TMLB_Min_Weight for compute-bound applications

» Load balancing for compute-bound applications
> Algorithm steps
m Reorders chares on cores with TreeMatch (favouring CPU load balancing)

Network (Tree, torus, etc)
Nodes For each group, sorting
according to the CPU load +
placement on cores
Memory
NN = -
Cores --- N
g&i{ég‘ 0 0

A ~
5668538884080 8 boddodidbdtodony

TreeMatch

Leaves of the fake topolo:
[O toaves ot o oty | 25750

Dynamic placement
e0

TMLB_Min_Weight - Minimizing migrations

» Load balancing for compute-bound applications
> Algorithm steps
m Reorders chares on cores with TreeMatch (favouring CPU load balancing)
m Reorders groups of chares on cores to minimize the migrations
» Assignment problem resolved by the Hungarian algorithm
m Find a independent set of minimal weight
m Applied on migration cost matrix

Network (Tree, torus, etc)

Groups

441414
3244444
432f44444
44333440
Es442434
4434344
4344423

444343k

CPU Load

Groups of chares
36 /56

Dynamic placement
(o]]

TMLB_Min_Weight - Results

» LeanMD: Charm++-based molecular dynamics application

m Compute-bound application

m Very unbalanced
» Compared to natives Charm++ load balancers

m GreedyLB: highest loaded chare on less loaded core

m RefinelLB: chares from overloaded cores to less loaded ones to reach average
» Up to 30% of gain compared to the baseline and between 5% and 10%

compared to the native load balancers

LeanMD on 64 cores - 960 chares

350 — T T T T

Baseline ——
& 300 GreedylLB ,
° RefineLB —

i ight _
§ 250 |- TMLB_min_weight —
» P
£ 200} ' b
£
= 150 - B
c
K]

S 100 - B
3
x
w 50 -
0 =, L L L L
0 500 1000 1500 2000 2500 3000

Particles per cell 37 /56

Dynamic placement
(o]]

TMLB_Min_Weight - Results

» LeanMD: Charm++-based molecular dynamics application
m Compute-bound application
m Very unbalanced
» Compared to natives Charm++ load balancers
m GreedyLB: highest loaded chare on less loaded core
m RefinelLB: chares from overloaded cores to less loaded ones to reach average
» Up to 30% of gain compared to the baseline and between 5% and 10%
compared to the native load balancers
» Amount of migrations
m Migration time reduced by 5% with the Hungarian algorithm

Number of migrated chares in LeanMD
960 chares - 64 cores

T T T T T GreedyLB
900 - 5 RefinelB —>
800 - TMLB_min_weight

700 i
600 - B
500 5
400 B
300 i
200 B
100

Number of migrated chares

e H—HR———X—X
| | . . |

0 500 1000 1500 2000 2500 3000
Particles per cell 38 /56

Dynamic placement
[]

TMLB _ TreeBased for communication-bound applications

» Load balancing for communication-bound applications

» Hierarchical and distributed algorithm
m Reorders groups of chares on nodes (LibTopoMap)
m Reorders chares inside each node: TreeMatch with constraints
m Each node in parallel

Network (tree, torus, etc)

------------ Node
A Q)0) | - Nodes
LibTopoMap I
------ lemory
----------------------- Memory
-- Cores

------- - - - - Cores

TreeMatchConstraints
[O Leaves of the fake topology }

@ Leaves with constraint

Groups of chares assigned on nodes

30/56

Dynamic placement
[]

TMLB _ TreeBased for communication-bound applications

» Load balancing for communication-bound applications
» Hierarchical and distributed algorithm

m Reorders groups of chares on nodes (LibTopoMap)
m Reorders chares inside each node: TreeMatch with constraints
m Each node in parallel

» Algorithm designed for scalability

m Consider the network to perform a first placement on nodes
m Parallel and distributed topology-aware load balancing inside nodes
m No sensitivity to initial placement

40 /56

TMLB _ TreeBased - Network

How to deal with the network topology?

» TreeMatch works only on
tree topologies

> LibTopoMap: library able

A
to place processes on any m‘
network topology /
Example: 3D torus Cray —
Cray Gemini -

Gemini network Router

Yz
ar= L

> Algorithm steps

41 /56

Dynamic placement
L]

TMLB _ TreeBased - Network

How to deal with the network topology?

» TreeMatch works only on
tree topologies

> LibTopoMap: library able
to place processes on any
network topology @
Example: 3D torus Cray
Gemini network
> Algorithm steps

m Convert the batch
scheduler allocation to
a readable format for
LibTopoMap

42 /56

Dynamic placement
L]

TMLB _ TreeBased - Network

How to deal with the network topology?

» TreeMatch works only on
tree topologies

> LibTopoMap: library able
to place processes on any
network topology 8% g

Example: 3D torus Cray
Gemini network
> Algorithm steps
m Convert the batch
scheduler allocation to
a readable format for
LibTopoMap
m Apply network
placement (groups of

chares on nodes) with
LibTopoMap

43 /56

Dynamic placement
[]

TMLB _ TreeBased - Parallelization

How to improve the algorithm scalability?

» Parallelized and distributed version of TMLB _TreeBased

m Two levels of parallelization
e OpenMP
® The Charm++ mechanisms for distribution

Master node

1 : Parallel distribution

3 : Results l:‘:‘:‘:‘ D : processing unit
0 ={2,5,1,0,3,4} @
i ,ieN
2 : Local calculation N the node set

i R

44 /56

Dynamic placement
°

TMLB _ TreeBased - Parallelization

How to improve the algorithm scalab

» Parallelized and distributed version of TMLB _TreeBased
m Two levels of parallelization
e OpenMP
® The Charm++ mechanisms for distribution
m Up to 130% of improvement compared to the fully sequential version
e Carried out on 16 nodes (32 cores/node)
e Parallel part: TreeMatch called on each node

Time repartition for each step of the TMLB_TreeBased algorithm

5
L a5 Initialization mes
5 : Sequential part m—
4 4 Parallel part
“ 3.5
g 3
¢ 25
£ 5
5 1
s 1
g 0.5
& ||

)

. RS

Q’)(. é(,
YIRS
4096 8192 16384

Number of chares 45 / 56

Dynamic placement
[]

TMLB _ TreeBased - Behavior faced with the initial placement

t is the sensitivity of TMLB_TreeBased to initial placement?

v

Application (kNeighbor) for which the optimal placement is known

Testbed: Intel Xeon Nehalem X5550 (8 cores)

TMLB_ TreeBased VS optimal placement VS default placement
m The initial mapping may vary according to the core numbering

No sensitivity of TMLB_ TreeBased to initial placement

Converge to the optimal placement

vy

vy

Execution time versus chares by core

200

Basleline Round Robir; —
Baseline Packed —>¢—
d (RR / Packed)

180
TMLB_Tr

160 -

140

120

iteration (in ms)

100

80 -

60 -

Average time for each 7-kNeighbor

140 L L L

Number of chares by core
46 /56

Dynamic placement
L o]

TMLB_ TreeBased - commBenc

» Benchmark simulating

Irregular communications Chares comm matrix — CommBench - 1 BW node 3
3
o |
3
o
3
3
3
2 |
3
o
3
<3
o | S
. ¥
=
[
g 8
z 3 &
3
[i4
AR EwR RN AR R ARUnA A MARRSRUNANY IRRRRERANRARRARS] o
{ S 7
S 8 _
E
T T T T T T
10 20 30 40 50 60 °7
Sender rank

47 /56

Dynamic placement
L o]

TMLB_ TreeBased - commBench

» Benchmark S|mu|atlng commBench on 512 cores
irregular communications 8192 elements — 1MB message size

150

» Execution time
improvement up to 25%
on 512 cores

» RefineCommLB:

locality-aware version of
RefineLB

100

50

Average time of one iteration in ms

TMLB_TreeBased-

Baseline
RefineCommLB -

48 /56

Dynamic placement
oe

TMLB_ TreeBased - commBench

>

Scalability: 8192 cores (256 XE6 nodes) on Blue Waters
Up to 65536 chares, i.e. 8 chares/core

\4

v

Native Charm++ load balancers do not work at such scale

v

28% of improvement compared to baseline

Execution time according to the number of chares/core
8192 cores (256 XE6 nodes) - IMB message size

70 T

:
60 H TMLB_TreeBased

Average time for each commBench
iteration (in ms)

0 I I

1 2 4 8
Number of chares per core

49 /56

Dynamic placement
]

TMLB _ TreeBased - Results analysis

» Communication distribution on the topology links before and after the call
to TMLB_TreeBased (in thousands of messages)

m Locality of communication improved

/N /N

864 864 800 soo

MMMMM

348 380 404 372 392 400 412 376 364 376 396 376 420 404 360 408
O OO0 OO 00 O © VO b 0O boO b

(a) Before load balancing (b) After the call to TMLB _TreeBased

50 /56

Dynamic placement
[]

Dynamic placement - partial conclusion

» Able to apply topology-aware load balancing

m For compute-bound applications
m For communication-bound applications

» Joint work with the PPL at Urbana and the JLPC*

4Francois Tessier, Emmanuel Jeannot, Esteban Meneses, Guillaume Mercier, and
Gengbin Zheng. “Communication and Topology-aware Load Balancing in Charm++ with
TreeMatch”. Anglais. In: IEEE Cluster 2013. Indianapolis, Etats-Unis: IEEE, Sept. 2013.
URL: http://hal.inria.fr/hal-00851148.
51 /56

http://hal.inria.fr/hal-00851148

Conclusion

Outline

@ Conclusion

52 /56

Conclusion
[]

Conclusion

Problems
» Take into account data locality for applications in large-scale platform

» More precisely, efficiently place parallel applications according to the
affinity and the topology

Contributions

» Static placement
m Proof of concept of the TreeMatch algorithm on parallel platforms
m Proof that min DistComm(o) is NP-Hard
m Significant amount of experiments
m Improve real application up to 25% compared to default mappings

» Dynamic placement
m Application independent Charm++ load balancers for compute-bound and

communication-bound applications

m Up to 30% of gain on a compute-bound application
m Outperforms by 25% the native load balancers on large-scale experiments
m Overcomes a limitation of the TreeMatch algorithm: oversubscribing

53 /56

Conclusion
[]

Perspectives

Short and medium term
» TreeMatch algorithm improvements

m Include partitioning algorithms from Scotch
m Network awareness: LibTopoMap, Scotch, hwloc
m Oversubscribing management implementation

» Better understand the criteria that impact performance when doing
placement

m Hardware counters
m Skeleton of applications

Long term

» How to measure affinity ?

» Other ways to take action in applications execution
m Affinity-aware job allocations: Adéle Villiermet PhD thesis

» Placement techniques for storage resources: new collaboration with ANL

in the context of the JLESC
m Topology-aware 1/O aggregation

54 /56

Conclusion
L]

Conclusion

Thank you for your attention!

55 /56

Mapping time on dense affinity m

Temps d'exécution (in ms)

le+06
100000
10000
1000
100

10

1

01 [

0.01

Comparaison du temps de calcul du placement entre TreeMatch
et d'autres méthodes considérant des modeles d'affinité
denses de grande taille

TreeMatch N
Scotch -
Chaco —+- |4

MPIPP-1

MPIPP-5 - {3 - |4

ParMETIS
T

| | |
1 10 100 1000 10000 10000C
Nombre de processus

56 /56

Mapping time on dense affinity matrices

» Load balancing time compared to other strategies

m TMLB_TreeBased is slower than the native strategies
m Counterbalanced by the quality of the topology-aware load balancing

Execution time of load balancing
strategies (running on 128 cores)

GreedyCommLB —+— 10000 F T i ' ' ! T
GreedylLB
RefineCommLB
TMLB_TreeBased —+@ 1000 d

100

10

Execution time (in m:

0.1 [L L L L L L
128 256 512 1024 2048 4096 8192

Number of chares

57 /56

	Context
	Problems
	Static placement
	Dynamic placement
	Conclusion

