
Communication-aware load balancing with TreeMatch in
Charm++

The 9th workshop of the Joint Laboratory for Petascale Computing, Lyon

Emmanuel Jeannot Guillaume Mercier François Tessier
In collaboration with the Charm++ Team from the PPL :

Esteban Meneses-Rojas, Gengbin Zheng, Sanjay Kale

June 14, 2013

François Tessier TreeMatch in Charm++ 1/ 16

Introduction

State of the Art

Multi-node and multi-core architectures : Message passing paradigm

Fine-grained implementation like Charm++ (independent computing
elements called "chares")

Dynamic load balancing according to a flat topology

Problems

Topology is not flat!

Add the notion of processes affinity

Take into account the communication between processes

Consider the underlying topology

François Tessier TreeMatch in Charm++ 2/ 16

Processes Placement

Why we should consider it

Many current and future parallel platforms have several levels of hierarchy

Application processes don’t exchange the same amount of data (affinity)
The process placement policy may have impact on performance

Cache hierarchy, memory bus, high-performance network...

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core

François Tessier TreeMatch in Charm++ 3/ 16

Problems

Given

The parallel machine topology

The application communication pattern

Map application processes to physical resources (cores) to reduce the
communication costs

François Tessier TreeMatch in Charm++ 4/ 16

TreeMatch

The TreeMatch Algorithm

Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
Input :

The communication pattern of the application
Preliminary execution with a monitored MPI implementation for static
placement
Dynamic recovery on iterative applications with Charm++

A representation of the underlying architecture : Hwloc can provide us this.
Output :

A processes permutation σ such that σi is the core number on which we
have to bind the process i

François Tessier TreeMatch in Charm++ 5/ 16

What about Charm++?

Not so easy...

Several issues raised!

Scalability of TreeMatch
Need to find a relevant compromise between processes affinities and load
balancing

Compute-bound applications
Communication-bound applications

Impact of chares migrations? What about load balancing time?

The next slides will present two load balancers relying on TreeMatch

TMLB_Min_Weight which applies a communication-aware load balancing
by favoring the CPU load levelling and minimizing migrations

TMLB_TreeBased which performs a parallel communication-aware load
balancing by giving advantage to the minimization of communication cost.

François Tessier TreeMatch in Charm++ 6/ 16

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load (leveling on less loaded chares)

Hungarian algorithm to minimize the migrations (max. weight matching)

Chares

François Tessier TreeMatch in Charm++ 7/ 16

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load (leveling on less loaded chares)

Hungarian algorithm to minimize the migrations (max. weight matching)

Chares

Chares placement + Load balancing -> groups of chares

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 7/ 16

Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load (leveling on less loaded chares)

Hungarian algorithm to minimize the migrations (max. weight matching)

Groups of chares

C
P

U
 L

oa
d

X 2 0 0 1 0 1 0
1 X 0 0 0 3 0 0
0 1 X 2 0 0 0 0
0 0 1 X 1 0 0 2
3 0 0 0 X 0 1 0
0 0 3 1 0 X 0 0
0 1 0 0 2 0 X 1
0 0 0 1 0 1 1 X

2 2 chares on core j come from core i

 To minimize migrations, it's better
to move the group of chares from new
core 1 to core 0

François Tessier TreeMatch in Charm++ 7/ 16

Results

LeanMD

Molecular Dynamics application

Massive unbalance, few communications

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

Particles per cell

LeanMD on 64 cores - 960 chares

Baseline
GreedyLB
RefineLB

TMLB_min_weight

François Tessier TreeMatch in Charm++ 8/ 16

Results

LeanMD - Migrations

Comparing to TMLB_Min_Weight without minimizing migrations :
Execution time up to 5% better
Around 200 migrations less

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000

N
u
m

b
e
r

o
f

m
ig

ra
te

d
 c

h
a
re

s

Particles per cell

Number of migrated chares in LeanMD
960 chares - 64 cores

GreedyLB
RefineLB

TMLB_min_weight

François Tessier TreeMatch in Charm++ 9/ 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Groups of chares
assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

Chares

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier TreeMatch in Charm++ 10 / 16

Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16

Results

kNeighbor

Benchmarks application designed to simulate intensive communication
between processes

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
Particularly compared to RefineCommLB

Takes into account load and communication
Minimizes migrations

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

250

300

kNeighbor on 64 cores
64 elements − 1MB message size

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

100

200

300

400

500

600

700

kNeighbor on 64 cores
128 elements − 1MB message size

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

500

1000

1500

2000

kNeighbor on 64 cores
256 elements − 1MB message size

François Tessier TreeMatch in Charm++ 11 / 16

Results

Impact on communication

Communications evolution between ten iterations

864 864

652 640 672 692

348380 404372 392400 412376

1 2 3 4 5 6 7 8

Communication between 10 iterations without
any load balancing strategy

(in thousands of messages sent)

800 800

620 636 688 664

364376 396376 420404 360408

1 2 3 4 5 6 7 8

Communication between 10 iterations after
the first call of TreeMatchLB

(in thousands of messages sent)

François Tessier TreeMatch in Charm++ 12 / 16

Results

Stencil3D

3 dimensional stencil with regular
communication with fixed neighbors

One chare per core : balance only
considering communications

Only one load balancing step after 10
iterations

Experiments on 8 nodes with 8 cores on
each (Intel Xeon 5550)

D
um

m
yL

B

G
re

ed
yC

om
m

LB

G
re

ed
yL

B

R
ef

in
eC

om
m

LB

T
M

LB
_T

re
eB

as
ed

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0

50

100

150

200

Stencil3D on 64 cores − 64 elements

François Tessier TreeMatch in Charm++ 13 / 16

Results

What about the load balancing time?

Linear trajectory while the number of chares is doubled

TMLB_TreeBased is clearly slower than the other strategies

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

64 128 256

E
xe

cu
ti

o
n
 t

im
e
 (

in
 m

s)

Number of chares

Execution time of load balancing
strategies (running on 64 cores)

DummyLB
GreedyCommLB

GreedyLB
RefineCommLB

TMLB_TreeBased

Figure : Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.

François Tessier TreeMatch in Charm++ 14 / 16

Future work and Conclusion

Future work

Find a better way to gather the topology (Hwloc?)

Distribute the parallel part of TMLB_TreeBased on the different nodes
(planned work with the PPL)

Make TMLB_TreeBased more scalable: allow to chose the level in the
hierarchy where the algorithm will be distributed

The end

Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Adapt our algorithm to large problems (Distributed)
Continue collaborations with the PPL

Common paper submitted for IEEE Cluster 2013

François Tessier TreeMatch in Charm++ 15 / 16

The End

Thanks for your attention !
Any questions?

François Tessier TreeMatch in Charm++ 16 / 16

