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Introduction

State of the Art

Multi-node and multi-core architectures : Message passing paradigm

Fine-grained implementation like Charm++ (independent computing
elements called "chares")

Dynamic load balancing according to a flat topology

Problems

Topology is not flat!

Add the notion of processes affinity

Take into account the communication between processes

Consider the underlying topology
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Processes Placement

Why we should consider it

Many current and future parallel platforms have several levels of hierarchy

Application processes don’t exchange the same amount of data (affinity)
The process placement policy may have impact on performance

Cache hierarchy, memory bus, high-performance network...

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core
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Problems

Given

The parallel machine topology

The application communication pattern

Map application processes to physical resources (cores) to reduce the
communication costs
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TreeMatch

The TreeMatch Algorithm

Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology
Input :

The communication pattern of the application
Preliminary execution with a monitored MPI implementation for static
placement
Dynamic recovery on iterative applications with Charm++

A representation of the underlying architecture : Hwloc can provide us this.
Output :

A processes permutation σ such that σi is the core number on which we
have to bind the process i
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What about Charm++?

Not so easy...

Several issues raised!

Scalability of TreeMatch
Need to find a relevant compromise between processes affinities and load
balancing

Compute-bound applications
Communication-bound applications

Impact of chares migrations? What about load balancing time?

The next slides will present two load balancers relying on TreeMatch

TMLB_Min_Weight which applies a communication-aware load balancing
by favoring the CPU load levelling and minimizing migrations

TMLB_TreeBased which performs a parallel communication-aware load
balancing by giving advantage to the minimization of communication cost.
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Strategy for Charm++

TMLB_Min_Weight

Applies TreeMatch on all chares (fake topology : #leaves = #chares)

Binds chares according to their load (leveling on less loaded chares)

Hungarian algorithm to minimize the migrations (max. weight matching)

Chares
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2     2 chares on core j come from core i

     To minimize migrations, it's better 
to move the group of chares from new 
core 1 to core 0
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Results

LeanMD

Molecular Dynamics application

Massive unbalance, few communications

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
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Results

LeanMD - Migrations

Comparing to TMLB_Min_Weight without minimizing migrations :
Execution time up to 5% better
Around 200 migrations less
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Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel
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Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Groups of chares 
assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

Chares

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6

Chares

François Tessier TreeMatch in Charm++ 10 / 16



Strategy for Charm++

TMLB_TreeBased

1st step : Applies TreeMatch while
considering groups of chares on
cores
2nd step : Reorders chares inside
each node

Defines the subtree
Creates a fake topology with as
much leaves as the number of
chares + something...
(constraints)
Applies TreeMatch on this
topology and the chares
communication pattern
Binds chares according to their
load (leveling on less loaded
chares)
Each node in parallel

0 2 4 6 1 3 5 7

Groups of chares assigned to cores

C
P

U
 L

oa
d

François Tessier TreeMatch in Charm++ 10 / 16



Results

kNeighbor

Benchmarks application designed to simulate intensive communication
between processes

Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550)
Particularly compared to RefineCommLB

Takes into account load and communication
Minimizes migrations
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Results

Impact on communication

Communications evolution between ten iterations
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Results

Stencil3D

3 dimensional stencil with regular
communication with fixed neighbors

One chare per core : balance only
considering communications

Only one load balancing step after 10
iterations

Experiments on 8 nodes with 8 cores on
each (Intel Xeon 5550)
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Results

What about the load balancing time?

Linear trajectory while the number of chares is doubled

TMLB_TreeBased is clearly slower than the other strategies
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Figure : Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.
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Future work and Conclusion

Future work

Find a better way to gather the topology (Hwloc?)

Distribute the parallel part of TMLB_TreeBased on the different nodes
(planned work with the PPL)

Make TMLB_TreeBased more scalable: allow to chose the level in the
hierarchy where the algorithm will be distributed

The end

Topology is not flat!

Processes affinities are not homogeneous

Take into account these information to map chares give us improvement

Adapt our algorithm to large problems (Distributed)
Continue collaborations with the PPL

Common paper submitted for IEEE Cluster 2013
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The End

Thanks for your attention !
Any questions?
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