
Load balacing and affinities between processes with
TreeMatch in Charm++ : preliminary results and

prospects
The seventh workshop of the Joint Laboratory for Petascale

Computing, Rennes

Emmanuel Jeannot Guillaume Mercier François Tessier
In collaboration with the Charm++ Team from the PPL : Sanjay Kale,

Esteban Meneses-Rojas, Pritish Jetley and Gengbin Zheng

June 15, 2012

François Tessier TreeMatch in Charm++ 1 / 22

Introduction

State of Art

Multi-node and multi-core architectures : Message passing paradigm

Load balancing according to a flat topology

Problems

Topology is not flat!

Add the notion of processes affinity?

Take into account the communication between processes?

François Tessier TreeMatch in Charm++ 2 / 22

Processes Placement

Why we should consider it

Plenty of current and future parallel platforms have several levels of
hierarchy

Application processes don’t exchange the same amount of data (affinity)
The process placement policy may have an impact on performance

Cache hierarchy, memory bus, high-performance network...

Switch

Cabinet Cabinet

... Node Node

... Processor Processor

Core Core Core Core

François Tessier TreeMatch in Charm++ 3 / 22

Problems

Given...

... The parallel machine topology

The application communication pattern

Map application processes to physical resources (cores) to reduce the
communication cost.

François Tessier TreeMatch in Charm++ 4 / 22

TreeMatch

The TreeMatch Algorithm

Algorithm and tool to perform processes placement based on processes
affinities and NUMA topology

Given a process i of {1...p}, p the number of processes, and a topology
tree composed of n leaves (cores) where n ≥ p, try to find a permutation
σ of {1...p} such that σi is the core on which the process i has to be
mapped to reduce communication cost.

Communication pattern

Given as a p x p communication matrix (where p is the number of
processes)

Metrics : Amount of data, number of messages, average
For MPI :

Need to modify the MPI implementation to monitor communication
For Charm++ :

Communications between objects are natively monitored

François Tessier TreeMatch in Charm++ 5 / 22

TreeMatch

Topology

Hwloc : library mainly developped
at Inria

Can provide us the topology
(tools, C library)

Portable abstraction, across OS,
versions, architectures, ...

Modern architectures (NUMA,
cores, caches, ...)

Can bind processes and threads
to CPUs

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

L2 (256KB)

L1 (32KB)

Core P#1

PU P#2

L2 (256KB)

L1 (32KB)

Core P#2

PU P#4

L2 (256KB)

L1 (32KB)

Core P#3

PU P#6

NUMANode P#1 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#1

L2 (256KB)

L1 (32KB)

Core P#1

PU P#3

L2 (256KB)

L1 (32KB)

Core P#2

PU P#5

L2 (256KB)

L1 (32KB)

Core P#3

PU P#7

Host: devel09

Indexes: physical

Date: jeu. 15 déc. 2011 16:15:47 CET

François Tessier TreeMatch in Charm++ 6 / 22

MPI Results

NAS Parallel Benchmarks

Static placement : Monitored execution→ TreeMatch→ affinity-aware
execution

CG (irregular memory access and communication), FT (all-to-all
communication), LU (irregular communication)

-10

 0

 10

 20

 30

cg.C.128

cg.D.128

ft.C.128

ft.D.128

lu.C.128

lu.D.128

D
iff

e
re

n
ce

 o
f

e
xe

cu
ti

o
n
 t

im
e
 (

in
 p

e
rc

e
n
t)

NAS Parallel Benchmarks

Comparison in terms of efficiency of TreeMatch
and others graph partitionners - metric : msg - processus : 128

Chaco
MPIPP1
MPIPP5
Packed

ParMETIS
RR

Scotch

François Tessier TreeMatch in Charm++ 7 / 22

What about charm++?

Not so easy...

Several issues raised!

Scalability of TreeMatch

Need to find a better compromise between processes affinities and load
balancing

Impact of migration time?

The next slides will present what we tried, the encountered problems and
what we plan to do to get around them.

François Tessier TreeMatch in Charm++ 8 / 22

Strategies for Charm++

First Strategy

GreedyLB (or any other LB) to perform load balancing

Create a communication matrix of groups of chares (communicating
objects responsible for performing some task) on each processor

Run TreeMatch on this pattern and the corresponding topology

Remap each group of chares on processors

5 10 15

5
10

15

Stencil3D

Sender rank

R
ec

ei
ve

r
ra

nk

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

6e
+

06

François Tessier TreeMatch in Charm++ 9 / 22

First Strategy

Initial state

LB + Affinities

Reorder groups

François Tessier TreeMatch in Charm++ 10 / 22

First Strategy

Initial state

LB + Affinities

Reorder groups

François Tessier TreeMatch in Charm++ 10 / 22

First Strategy

Initial state

LB + Affinities

Reorder groups

François Tessier TreeMatch in Charm++ 10 / 22

Strategies for Charm++

Second Strategy

Create a communication matrix of chares

Generate a fake topology, featuring as many leaf as chares (integer
factorization)

Run TreeMatch to find chares affinity

Map chares to physical processors, taking into account the load and the
affinity

François Tessier TreeMatch in Charm++ 11 / 22

Example

Initial state

Find affinities

Reordering + LB

Compromise!

François Tessier TreeMatch in Charm++ 12 / 22

Example

Initial state

Find affinities

Reordering + LB

Compromise!

François Tessier TreeMatch in Charm++ 12 / 22

Example

Initial state

Find affinities

Reordering + LB

Compromise!

François Tessier TreeMatch in Charm++ 12 / 22

Example

Initial state

Find affinities

Reordering + LB

Compromise!

François Tessier TreeMatch in Charm++ 12 / 22

Preliminary results with Charm++

LeanMD

Molecular Dynamics application

Few communications

Experiments on 4 nodes with 8
processors on each (Intel Xeon
5550)

 0

 5

 10

 15

 20

 25

GreedyLB

TreeM
atchLB_2

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d

s)

Load Balancers

LeanMD : Calculation and LB time - metric : msg

Calculation time
LB time

François Tessier TreeMatch in Charm++ 13 / 22

Preliminary results with Charm++

kNeighbor

Benchmarks application designed to
simulate intensive communication
between processes

Experiments on 4 nodes with 8
processors on each (Intel Xeon 5550)
Particularly compared to RefineCommLB

Take into account load and
communication
minimize migrations

 0

 10

 20

 30

 40

 50

 60

Load Balancers

E
xe

cu
ti

o
n
 t

im
e
 (

in
 s

e
co

n
d
s)

kNeighbor : Execution time - metric : msg

GreedyLB
GreedyCommLB
TreeMatchLB_2
RefineCommLB

François Tessier TreeMatch in Charm++ 14 / 22

Preliminary results with Charm++

Barnes-hut Tree

Cosmological algorithm
for performing a n-body
simulation

Charm++ version

Irregular communication
(see next slide)

Figure: Complete Barnes-Hut tree [Wikipedia]

François Tessier TreeMatch in Charm++ 15 / 22

Preliminary results with Charm++

10 20 30 40

10
20

30
40

Barnes−Hut

Sender rank

R
ec

ei
ve

r
ra

nk

0
20

40
60

80
10

0
12

0
Figure: Barnes-Hut communication matrix

François Tessier TreeMatch in Charm++ 16 / 22

Preliminary results with Charm++

Barnes-Hut Tree

No improvments for now...

But it’s a work in progress!

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

in
 s

e
co

n
d

s)

Load balancing frequency

Execution time according to load balancing frequency

TreeMatchLB_2
TreeMatchLB_1

GreedyLB
Orb3dLB_notopo

Baseline

François Tessier TreeMatch in Charm++ 17 / 22

Preliminary results with Charm++

Figure: Barnes LB with TreeMatchLB

François Tessier TreeMatch in Charm++ 18 / 22

Preliminary results with Charm++

Figure: Barnes LB with Orb3d_notopo

François Tessier TreeMatch in Charm++ 19 / 22

Future works

Distributed algorithm

Because of the lack of scalability of TreeMatch

Divide the problem and run several instances of TreeMatch at the same
time

Load balancing

Work on an algorithm to find a better compromise between processes
affinities and load balancing

Estimate the migration impact and if necessary, include this constraint in
the algorithm

François Tessier TreeMatch in Charm++ 20 / 22

Conclusion

The end

Topology is not flat!

Processes affinities are not uniform

Take into account these informations to map chares could give us
improvments

Adapt our algorithm to large problems (Distributed)

Continue collaborations with the PPL

François Tessier TreeMatch in Charm++ 21 / 22

The End

Thanks for your attention !
Any questions?

François Tessier TreeMatch in Charm++ 22 / 22

