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costs of the application.

Abstract

Current generations of NUMA node clusters feature multicore
or manycore processors. Programming such architectures effi-
ciently 1s a challenge because numerous hardware characteristics
have to be taken into account, especially the memory hierarchy.
One appealing 1dea to improve the performance of parallel appli-
cations 1s to decrease their communication costs by matching the
communication pattern to the underlying hardware architecture.
In this poster, we detail the algorithm and techniques proposed
to achieve such a result: first, we gather both the communication
pattern information and the hardware details. Then we compute a
relevant reordering of the various process ranks of the application.
Finally, those new ranks are used to reduce the communication

General Overview

e High performance applications

— Molecular dynamics

— Climate stmulation

— Plane wing design

Figure 1: Acoustic simulation : the impact of urban noise

e Multi-node and multi-core architectures

— Different levels of memory hierarchy
— NUMA effects (Non Uniform Memory Access)

— Data locality?

n : amount of communication
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Process Placement

Why we should consider it ?

e Amount of data exchanged between processus not homogeneous

(affinity)
Proc 0 1 2 3 4 5 6 7
0 0 311811 0 0 157979 0 0 0
1 |311811 0 311810 0 0 159986 0 0
2 0 311810 0 311811 0 0 153832 0
3 0 0 311811 0 0 0 0 151825
4 157979 0 0 0 0 311811 0 0
5 0 159986 0 0 311811 0 311810 0
6 0 0 153832 0 0 311810 0 311811
7 0 0 0 151825 0 0 311811 0

Table 1: Communication matrix from a LLU factorization carried out

on 8 processes (metric : size)

e Communication speed : cache > RAM > network
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e Performances improved by a relevant process placement [1]

Formalisation

Given :

e The application affinity pattern (e.g. communication)

e The underlying architecture

. francols.tessierdinria.fr

Solution

Communication Pattern

e Communication matrix of size p X p with p the number of processes
e Metrics

— size . amount of data exchanged (kB)
— msg : number of messages exchanged
—avg : average size of a message (size/msg)

ZEUSMP/2 communication pattern — Metric : msg
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Figure 3: Communication matrix of the CFD application ZeusMP/2
carried out on 16 processes (metric : msg)

Hardware Topology

e hwloc : library mainly developed at Inria

e Gather the node topology of modern architectures
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Figure 4: Hardware topology gathered by hwloc

TreeMatch

e Algorithm to compute process placement based on processes
affinity and NUMA topology

— p the number of processes
—n the number of cores, n > p

Map application processes to physical resources
(cores) to reduce the communication cost.

o; the core on which we map process ¢,
0; € [1,71],2 S [Lp]
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Results

e CFD application ZeusMP/2
e Architecture

— 8 nodes, 2 processors with 8 cores on each (Intel Xeon Nehalem
X5550 (2,6 GHz))

— InfiniBand network
— Open MPI 1.5.4
® /115¢ metric

e Compared to well-known methods
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Figure 5: Impact of process placement on the execution time of the
ZeusMP/2 CFD application

Conclusion

e Good results compared to the other strategies
e Improvement to consider the network ?

e Algorithm also used for dynamic process placement (e.g. load
balancing)
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