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Abstract

Current generations of NUMA node clusters feature multicore
or manycore processors. Programming such architectures effi-
ciently is a challenge because numerous hardware characteristics
have to be taken into account, especially the memory hierarchy.
One appealing idea to improve the performance of parallel appli-
cations is to decrease their communication costs by matching the
communication pattern to the underlying hardware architecture.
In this poster, we detail the algorithm and techniques proposed
to achieve such a result: first, we gather both the communication
pattern information and the hardware details. Then we compute a
relevant reordering of the various process ranks of the application.
Finally, those new ranks are used to reduce the communication
costs of the application.

General Overview
•High performance applications

– Molecular dynamics
– Climate simulation
– Plane wing design

Figure 1: Acoustic simulation : the impact of urban noise

•Multi-node and multi-core architectures

– Different levels of memory hierarchy
– NUMA effects (Non Uniform Memory Access)
– Data locality?
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n : amount of communication

Process Placement

Why we should consider it ?

•Amount of data exchanged between processus not homogeneous
(affinity)

Proc 0 1 2 3 4 5 6 7
0 0 311811 0 0 157979 0 0 0
1 311811 0 311810 0 0 159986 0 0
2 0 311810 0 311811 0 0 153832 0
3 0 0 311811 0 0 0 0 151825
4 157979 0 0 0 0 311811 0 0
5 0 159986 0 0 311811 0 311810 0
6 0 0 153832 0 0 311810 0 311811
7 0 0 0 151825 0 0 311811 0

Table 1: Communication matrix from a LU factorization carried out
on 8 processes (metric : size)

• Communication speed : cache > RAM > network
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Figure 2: Bandwidth in MB/s of various memory levels according to
the size of the sent data

• Performances improved by a relevant process placement [1]

Formalisation

Given :

• The application affinity pattern (e.g. communication)

• The underlying architecture

Map application processes to physical resources
(cores) to reduce the communication cost.

Solution

Communication Pattern
• Communication matrix of size p× p with p the number of processes

•Metrics

– size : amount of data exchanged (kB)
– msg : number of messages exchanged
– avg : average size of a message (size/msg)
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Figure 3: Communication matrix of the CFD application ZeusMP/2
carried out on 16 processes (metric : msg)

Hardware Topology
• hwloc : library mainly developed at Inria

•Gather the node topology of modern architectures
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Figure 4: Hardware topology gathered by hwloc

TreeMatch
•Algorithm to compute process placement based on processes

affinity and NUMA topology

– p the number of processes
– n the number of cores, n ≥ p

σi the core on which we map process i,
σi ∈ [1, n], i ∈ [1, p]

Results
• CFD application ZeusMP/2
•Architecture

– 8 nodes, 2 processors with 8 cores on each (Intel Xeon Nehalem
X5550 (2,6 GHz))

– InfiniBand network
– Open MPI 1.5.4
•msg metric
• Compared to well-known methods
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Figure 5: Impact of process placement on the execution time of the
ZeusMP/2 CFD application

Conclusion
•Good results compared to the other strategies
• Improvement to consider the network ?
•Algorithm also used for dynamic process placement (e.g. load

balancing)
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