Topology-aware process placement

on multicore architectures
Towards Exascale High Performance Computing

Francois Tessier

University of Bordeaux - LaBRI - Inria

costs of the application.

Abstract

Current generations of NUMA node clusters feature multicore
or manycore processors. Programming such architectures effi-
ciently 1s a challenge because numerous hardware characteristics
have to be taken into account, especially the memory hierarchy.
One appealing 1dea to improve the performance of parallel appli-
cations 1s to decrease their communication costs by matching the
communication pattern to the underlying hardware architecture.
In this poster, we detail the algorithm and techniques proposed
to achieve such a result: first, we gather both the communication
pattern information and the hardware details. Then we compute a
relevant reordering of the various process ranks of the application.
Finally, those new ranks are used to reduce the communication

General Overview

e High performance applications

— Molecular dynamics

— Climate stmulation

— Plane wing design

Figure 1: Acoustic simulation : the impact of urban noise

e Multi-node and multi-core architectures

— Different levels of memory hierarchy
— NUMA effects (Non Uniform Memory Access)

— Data locality?

n : amount of communication

Network

------- Memory

Cores

Contact Information:

Runtime Team - Inria Bordeaux
200, Avenue de la Vieille Tour
33405 Talence

Phone: +33 524 57 41 52

Email

Process Placement

Why we should consider it ?

e Amount of data exchanged between processus not homogeneous

(affinity)
Proc 0 1 2 3 4 5 6 7
0 0 311811 0 0 157979 0 0 0
1 |311811 0 311810 0 0 159986 0 0
2 0 311810 0 311811 0 0 153832 0
3 0 0 311811 0 0 0 0 151825
4 157979 0 0 0 0 311811 0 0
5 0 159986 0 0 311811 0 311810 0
6 0 0 153832 0 0 311810 0 311811
7 0 0 0 151825 0 0 311811 0

Table 1: Communication matrix from a LLU factorization carried out

on 8 processes (metric : size)

e Communication speed : cache > RAM > network

9000
8000
7000 -

Bandwidth in MBps

2000
1000 ~

Figure 2: Bandwidth in MB/s of various memory levels according to

6000
5000
4000
3000

Bandwidth according to transmitted bytes

Intra-node, RAM shared —«—
Intra-node, L3 shared —x—

T T | T T T
Inter-nodes

0
0.001

0.01

the size of the sent data

1

10

100

Message size (in KB)

1000

10000

e Performances improved by a relevant process placement [1]

Formalisation

Given :

e The application affinity pattern (e.g. communication)

e The underlying architecture

. francols.tessierdinria.fr

Solution

Communication Pattern

e Communication matrix of size p X p with p the number of processes
e Metrics

— size . amount of data exchanged (kB)
— msg : number of messages exchanged
—avg : average size of a message (size/msg)

ZEUSMP/2 communication pattern — Metric : msg

15

1.5e+07

10

1.0e+07

Receiver rank

5.0e+06
|

o
-
o
-
o
0.0e+00

Sender rank

Figure 3: Communication matrix of the CFD application ZeusMP/2
carried out on 16 processes (metric : msg)

Hardware Topology

e hwloc : library mainly developed at Inria

e Gather the node topology of modern architectures

Machine (24GB)

NUMANode P#0 (12GB) NUMANode P#1 (12GB)

Socket P#1 Socket P#0

L3 (8192KB) L3 (8192KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)

Core P#0 Core P#1 Core P#2 Core P#3 Core P#0 Core P#1 Core P#2 Core P#3

PU P#0 PU P#2 PU P#4 PU P#6 PU P#1 PU P#3 PU P#5 PU P#7

Figure 4: Hardware topology gathered by hwloc

TreeMatch

e Algorithm to compute process placement based on processes
affinity and NUMA topology

— p the number of processes
—n the number of cores, n > p

Map application processes to physical resources
(cores) to reduce the communication cost.

o; the core on which we map process ¢,
0; € [1,71],2 S [Lp]

universite

“BORDEAUX

Results

e CFD application ZeusMP/2
e Architecture

— 8 nodes, 2 processors with 8 cores on each (Intel Xeon Nehalem
X5550 (2,6 GHz))

— InfiniBand network
— Open MPI 1.5.4
® /115¢ metric

e Compared to well-known methods

64 processes 128 processes

400
800

300
600

Execution time in seconds
200

Execution time in seconds
400
|—

100

0

0 200
- -
)
Hi

Packed -

Chaco
MPIPP1 -
MPIPP5S -
Packed -
TreeMatch-
RR
Scotch
Scotch_w -
ParMETIS -
Chaco
MPIPP1 -
MPIPP5
TreeMatch-
RR
Scotch
Scotch_w -
ParMETIS -

256 processes

1000

500

Execution time in seconds
——

Chaco
MPIPP1 -
MPIPP5 -
Packed -
ParMETIS -

TreeMatch-
RR
Scotch
Scotch_w -

Figure 5: Impact of process placement on the execution time of the
ZeusMP/2 CFD application

Conclusion

e Good results compared to the other strategies
e Improvement to consider the network ?

e Algorithm also used for dynamic process placement (e.g. load
balancing)

References

[1] PRACE. The scientific case for high performance computing in
Europe. report, 2012. P. 147,
http://www.prace—-ri.eu/IMG/pdf/prace_—_the_
sclentifilc_case_-_executive_s.pdt.

[2] Francois Tessier, Guillaume Mercier, and Emmanuel Jeannot.
Process placement in multicore clusters:algorithmic issues and
practical techniques. IEEE Transactions on Parallel and
Distributed Systems, 25(4):993-1002, 2014.



