
Topology-aware process placement
on multicore architectures
Towards Exascale High Performance Computing

François Tessier
University of Bordeaux - LaBRI - Inria

Contact Information:
Runtime Team - Inria Bordeaux
200, Avenue de la Vieille Tour
33405 Talence

Phone: +33 5 24 57 41 52
Email: francois.tessier@inria.fr

Abstract

Current generations of NUMA node clusters feature multicore
or manycore processors. Programming such architectures effi-
ciently is a challenge because numerous hardware characteristics
have to be taken into account, especially the memory hierarchy.
One appealing idea to improve the performance of parallel appli-
cations is to decrease their communication costs by matching the
communication pattern to the underlying hardware architecture.
In this poster, we detail the algorithm and techniques proposed
to achieve such a result: first, we gather both the communication
pattern information and the hardware details. Then we compute a
relevant reordering of the various process ranks of the application.
Finally, those new ranks are used to reduce the communication
costs of the application.

General Overview
•High performance applications

– Molecular dynamics
– Climate simulation
– Plane wing design

Figure 1: Acoustic simulation : the impact of urban noise

•Multi-node and multi-core architectures

– Different levels of memory hierarchy
– NUMA effects (Non Uniform Memory Access)
– Data locality?

Network

Memory

Cores

n

n : amount of communication

Process Placement

Why we should consider it ?

•Amount of data exchanged between processus not homogeneous
(affinity)

Proc 0 1 2 3 4 5 6 7
0 0 311811 0 0 157979 0 0 0
1 311811 0 311810 0 0 159986 0 0
2 0 311810 0 311811 0 0 153832 0
3 0 0 311811 0 0 0 0 151825
4 157979 0 0 0 0 311811 0 0
5 0 159986 0 0 311811 0 311810 0
6 0 0 153832 0 0 311810 0 311811
7 0 0 0 151825 0 0 311811 0

Table 1: Communication matrix from a LU factorization carried out
on 8 processes (metric : size)

• Communication speed : cache > RAM > network

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.001 0.01 0.1 1 10 100 1000 10000

B
a
n
d
w

id
th

 i
n
 M

B
p
s

Message size (in KB)

Bandwidth according to transmitted bytes

Inter-nodes
Intra-node, RAM shared

Intra-node, L3 shared

Figure 2: Bandwidth in MB/s of various memory levels according to
the size of the sent data

• Performances improved by a relevant process placement [1]

Formalisation

Given :

• The application affinity pattern (e.g. communication)

• The underlying architecture

Map application processes to physical resources
(cores) to reduce the communication cost.

Solution

Communication Pattern
• Communication matrix of size p× p with p the number of processes

•Metrics

– size : amount of data exchanged (kB)
– msg : number of messages exchanged
– avg : average size of a message (size/msg)

5 10 15

5
10

15

ZEUSMP/2 communication pattern − Metric : msg

Sender rank

R
ec

ei
ve

r
ra

nk

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Figure 3: Communication matrix of the CFD application ZeusMP/2
carried out on 16 processes (metric : msg)

Hardware Topology
• hwloc : library mainly developed at Inria

•Gather the node topology of modern architectures

Machine (24GB)

NUMANode P#0 (12GB)

Socket P#1

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

NUMANode P#1 (12GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#7

Figure 4: Hardware topology gathered by hwloc

TreeMatch
•Algorithm to compute process placement based on processes

affinity and NUMA topology

– p the number of processes
– n the number of cores, n ≥ p

σi the core on which we map process i,
σi ∈ [1, n], i ∈ [1, p]

Results
• CFD application ZeusMP/2
•Architecture

– 8 nodes, 2 processors with 8 cores on each (Intel Xeon Nehalem
X5550 (2,6 GHz))

– InfiniBand network
– Open MPI 1.5.4
•msg metric
• Compared to well-known methods

0
10

0
20

0
30

0
40

0

C
ha

co

M
P

IP
P

1

M
P

IP
P

5

P
ac

ke
d

Tr
ee

M
at

ch

R
R

S
co

tc
h

S
co

tc
h_

w

P
ar

M
E

T
IS

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

64 processes

0
20

0
40

0
60

0
80

0

C
ha

co

M
P

IP
P

1

M
P

IP
P

5

P
ac

ke
d

Tr
ee

M
at

ch

R
R

S
co

tc
h

S
co

tc
h_

w

P
ar

M
E

T
IS

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

128 processes

0
50

0
10

00

C
ha

co

M
P

IP
P

1

M
P

IP
P

5

P
ac

ke
d

Tr
ee

M
at

ch

R
R

S
co

tc
h

S
co

tc
h_

w

P
ar

M
E

T
IS

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

256 processes

Figure 5: Impact of process placement on the execution time of the
ZeusMP/2 CFD application

Conclusion
•Good results compared to the other strategies
• Improvement to consider the network ?
•Algorithm also used for dynamic process placement (e.g. load

balancing)

References
[1] PRACE. The scientific case for high performance computing in

Europe. report, 2012. P. 147,
http://www.prace-ri.eu/IMG/pdf/prace_-_the_
scientific_case_-_executive_s.pdf.

[2] Francois Tessier, Guillaume Mercier, and Emmanuel Jeannot.
Process placement in multicore clusters:algorithmic issues and
practical techniques. IEEE Transactions on Parallel and
Distributed Systems, 25(4):993–1002, 2014.

