
APPENDIX A
APPLICATION COMMUNICATION PATTERNS

In this Appendix, we provide several examples of com-
munication patterns; what is shown is the number of
messages exchanged between processes. The rank num-
bers correspond to that of MPI_COMM_WORLD. Figure 5
shows the pattern for the CG kernel of the NAS bench-
marks, Figure 6 shows FT and Figure 7 shows LU. For
Zeus/MP, Fig. 8 shows the pattern for 64 processes.

10 20 30 40 50 60

10
20

30
40

50
60

cg.C.64 communication pattern − Metric : msg

Sender rank

R
ec

ei
ve

r r
an

k

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Fig. 5. Communication pattern of CG.C.64

10 20 30 40 50 60

10
20

30
40

50
60

ft.D.64 communication pattern − Metric : msg

Sender rank

R
ec

ei
ve

r r
an

k

0
20

40
60

80
10

0

Fig. 6. Communication pattern of FT.D.64

10 20 30 40 50 60

10
20

30
40

50
60

lu.D.64 communication pattern − Metric : msg

Sender rank

R
ec

ei
ve

r r
an

k

0
50

00
0

10
00

00
15

00
00

20
00

00
25

00
00

Fig. 7. Communication pattern of LU.D.64

10 20 30 40 50 60

10
20

30
40

50
60

ZeusMP − 64 processes, msg metric − Baseline

Sender rank

R
ec

ei
ve

r r
an

k

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

Fig. 8. Communication of Zeus/MP 64

APPENDIX B
PROCESS BINDING

When the processes are bound to computing units, the
application is able to deliver more stable and predictable
performance. Indeed, the standard deviation of the over-
all execution time is decreased, as shown in Table 1.
When a process is not bound to a specific computing
unit, the operating system scheduler may swap it to an-
other computing unit, leading to cache misses that harm
performance. However, as the scheduling of processes is
not deterministic, the impact on the performance varies
from one run to another. That is why the standard devi-

ation of several runs is lower when binding is enforced.

Number of Iterations No Binding Binding Improvement
of Processes of Processes

1000 0.077 0.089 +15%
2000 0.127 0.062 -51%
3000 0.112 0.097 -13%
4000 0.069 0.052 -25%
5000 0.289 0.121 -58%
10000 0.487 0.194 -60%
15000 0.24 0.154 -36%
20000 0.374 0.133 -64%
25000 0.597 0.247 -59%
30000 0.744 0.26 -65%
35000 0.78 0.3 -61%
40000 0.687 0.227 -67%
45000 0.776 0.631 -19%
50000 1.095 0.463 -58%

TABLE 1
Standard deviation figures for 10 runs of ZEUS-MP/2
CFD application with 64 processes (mhd blast case)

APPENDIX C
MODIFICATIONS TO LEGACY MPI SOURCE
CODES

We modified legacy MPI applications to issue a call to
the MPI 2.2 MPI_Dist_graph_create routine in order
to create a new communicator (comm_to_use) in which
the processes ranks are reordered. This call is made
(and the reordering computed) just after the initialization
step and before any application data are loaded into the
MPI processes, otherwise data movements are necessary.
Then, all relevant occurrences of MPI_COMM_WORLD are
replaced by comm_to_use in the rest of the code. We
provide as a commodity a routine (read_pattern) that
gets the pattern from a trace file generated by a previous
run of the target application8.

C.1 An example of C application: the IS NAS kernel
In the case of the IS NAS kernel, two new program
arguments are used: the first one is the name of the
pattern information file while the second argument is
the metric to be used (size, msg or avg). Also, fourteen
occurrences of MPI_COMM_WORLD have been replaced by
comm_to_use in the rest of the code (file is.c).
Here is the complete modified code:
/* Initialize MPI */

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

if(argc > 1){
int reorder = 1;

if (my_rank == 0){
int *sources = NULL;
int *degrees = NULL;
int *destinations = NULL;
int *weights = NULL;

8. The users are supposed to provide such a pattern and feed
it directly to the MPI_Dist_graph_create function through its
destinations,weights, sources and degrees parameters.

read_pattern(pattern_file,comm_size,
&destinations,&weights,
&sources,°rees,metric_to_use);

MPI_Dist_graph_create(MPI_COMM_WORLD,comm_size,
sources,degrees,
destinations,weights,
MPI_INFO_NULL,
reorder, &comm_topo);

free(sources);
free(degrees);
free(destinations);
free(weights);

} else {
MPI_Dist_graph_create(MPI_COMM_WORLD,0,

NULL,NULL,
NULL,NULL,
MPI_INFO_NULL,
reorder, &comm_topo);

}

if (comm_topo != MPI_COMM_NULL)
comm_to_use = comm_topo;

else
comm_to_use = MPI_COMM_WORLD;

MPI_Comm_rank(comm_to_use, &my_rank);
}

C.2 An example of Fortran application: ZEUS-MP/2
The ZEUS-MP/2 source code modifications follow the
same scheme as the previous example:
1) A new variable comm_to_use has been introduced

in the file mod_files.F.
2) The file configure.F has been modified to make

the call to MPI_Dist_graph_create (as shown
below).

3) MPI COMM WORLD occurrences have been re-
placed by comm_to_use in the following source
files: mstart.F (seven occurrences), rshock.F
(two occurrences), setup.F (14 occurrences),
marshak.F (one occurrence), restart.F (two
occurrences), fftwplan.c (two occurrences) and
fftw_ps.c (two occurrences).

Here is an excerpt of the configure.F file demonstrat-
ing the use of the MPI_Dist_graph_create function:
#ifdef MPI_USED
c
c Reordering modifs
c

character name*64, mode*1
integer switch_comm
integer num_degrees, numargs, newmode
integer, allocatable, dimension(:) :: sources
integer, allocatable, dimension(:) :: degrees
integer, allocatable, dimension(:) :: destinations
integer, allocatable, dimension(:) :: weights

#endif

c
c--
c If parallel execution, start up MPI
c--
c
#ifdef MPI_USED

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myid_w , ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs_w, ierr)

c
c Reordering Modifs
c

reorder = .true.
switch_comm = 0

numargs = iargc()

if (numargs .eq. 2) then
if(myid_w .eq. 0) then

allocate(sources(nprocs_w))
allocate(degrees(nprocs_w))
num_degrees = 0
call getarg(1, pattern_file)
call read_pattern_fortran_get_degrees(num_degrees,

> pattern_file)

allocate(destinations(num_degrees))
allocate(weights(num_degrees))

call getarg(2, metric_to_use)
read(metric_to_use, ’(i10)’) newmode
call read_pattern_fortran(nprocs_w, num_degrees,

> destinations(1), weights(1), sources(1),
> degrees(1),newmode,pattern_file)

call MPI_DIST_GRAPH_CREATE(MPI_COMM_WORLD,
> nprocs_w,sources,degrees,destinations,
> weights, MPI_INFO_NULL,
> reorder,comm_topo,ierr)

deallocate(sources,stat = ierr)
deallocate(degrees,stat = ierr)
deallocate(destinations,stat = ierr)
deallocate(weights,stat = ierr)

else
call MPI_DIST_GRAPH_CREATE(MPI_COMM_WORLD, 0,

> 0, 0, 0, 0,
> MPI_INFO_NULL,
> reorder,comm_topo,ierr)

endif
switch_comm = 1

endif

if(switch_comm .eq. 1) then
comm_to_use = comm_topo

else
comm_to_use = MPI_COMM_WORLD

endif

call MPI_COMM_RANK(comm_to_use, myid_w, ierr)
reorder = .false.

#else
myid_w = 0
myid = 0

#endif /* MPI_USED */

APPENDIX D
DETAILS OF THE TREEMATCH ALGORITHM

D.1 Regular version of TREEMATCH

For TREEMATCH, we assume that the topology tree is
balanced (leaves are all at the same depth) and sym-
metric (all the nodes of a given depth possess the same
arity). Such assumptions are indeed very realistic in
the case of a homogeneous parallel machine where all
processors, sockets, nodes or cabinets are identical. In
order to optimize the communication time of an appli-
cation, the TREEMATCH algorithm will map processes to
cores depending on the amount of data they exchange.
The TREEMATCH algorithm is depicted in Algorithm 1,
page 5.
To describe how the TREEMATCH algorithm works we

will run it on the example given in Figure 9. Here, the
topology is modeled by a tree of depth 4 with 12 leaves
(computing units). The communication pattern between
MPI processes is modeled by an 8 × 8 matrix (hence,
we have eight processes). The algorithm processes the
tree upward at depth 3. At this depth, we call the arity
of the node of the next level k. In our case k = 2
and divides the order p = 8 of the matrix m. Hence,

Proc 0 1 2 3 4 5 6 7
0 0 1000 10 1 100 1 1 1
1 1000 0 1000 1 1 100 1 1
2 10 1000 0 1000 1 1 100 1
3 1 1 1000 0 1 1 1 100
4 100 1 1 1 0 1000 10 1
5 1 100 1 1 1000 0 1000 1
6 1 1 100 1 10 1000 0 1000
7 1 1 1 100 1 1 1000 0

(a) Communication Matrix

�� �� �� �� �� ��� �� �� �� �� �� ���

�� �� �� �� �� �� �� �������������

������� �� �� �� �� �� �� �� ��

�� �� �� �� �� ���� ����������������

��������� ���������

(b) Topology tree (squares represent mapped processes using dif-
ferent algorithms)

Fig. 9. Input example of the TREEMATCH algorithm

we directly go to line 6 where the algorithm calls the
function GroupProcesses.
This information is given by a communication matrix,

which can be determined as explained in Section 2.1.

Function GroupProcesses(T ,m,depth)
Input: T //The topology tree
Input: m // The communication matrix
Input: depth // current depth

1 l ←ListOfAllPossibleGroups(T ,m,depth)
2 G ←GraphOfIncompatibility(l)
3 return IndependentSet(G)

This function first builds the list of possible groups
of processes. The size of the group is given by the arity
k of the node of the tree at the upper level (here 2).
For instance, we can group process 0 with processes 1
or 2 up to 7 and process 1 with processes 2 up to 7
and so on. Formally we have

�
2
8

�
= 28 possible groups

of processes. As we have p = 8 processes and we will
group them by pairs (k=2), we need to find p/k = 4
groups that do not have processes in common. To find
these groups, we will build the graph of incompatibilities
between the groups (line 2). Two groups are incompatible
if they share a process (e.g., group (2,5) is incompatible
with group (5,7) as process 5 cannot be mapped at two
different locations). In this graph of incompatibilities,
vertices correspond to the groups and we have an edge
between two vertices if the corresponding groups are
incompatible. In the literature, such a graph is referred
to as the complement of a Kneser Graph [41]. The set
of groups we are looking for is thus an independent set
of this graph. A valuable property of the complement of
the Kneser graph is that since k divides p, any maximal
independent set is maximum and of size p/k. Therefore,
any greedy algorithm always finds an independent set
of the required size. However, all grouping of processes
(i.e., independent sets) are not of equal quality. They

depend on the values of the matrix. In our example,
grouping process 0 with process 5 is not a good idea
as they exchange only one piece of data and if we group
them we will have a lot of remaining communication to
perform at the next level of the topology. To account for
this, we valuate the graph with the amount of communi-
cation reduced thanks to this group. For instance, based
on the matrix m, the sum of communication of process 0
is 1114 and of process 1 is 2104 for a total of 3218. If we
group them together, we will reduce the communication
volume by 2000. Hence, the valuation of the vertex cor-
responding to group (0,1) is 3218-2000=1218. The smaller
the value, the better the grouping. Unfortunately, finding
such an independent set of minimum weight is NP-Hard
and inapproximable at a constant ratio [42]. Therefore,
we use heuristics to find a “good” independent set:

• smallest values first: we rank vertices by smallest
values first and we build a maximal independent
set greedily, starting with the vertices with smallest
values.

• largest values last: we rank vertices by smallest
values first and we build a maximal independent set
such that the largest index of the selected vertices is
minimized.

• largest weighted degrees first: we rank vertices
by their decreasing weighted degrees (the average
weight of their neighbors) and we build a maximal
independent set greedily, starting with the vertices
with largest weighted degrees [42].

In our implementation we start with the first method and
try to improve the solution by applying the last two.
We can use a user-defined threshold value to disable
the weighted degrees technique when the number of
possible groups is too large.
In our case, regardless of the heuristic we use, we

find the independent set of minimum weight, which is
{(0,1),(2,3),(4,5),(6,7)}. This list is affected to the array
group[3] in line 6 of the TREEMATCH algorithm. This
means that, for instance, process 0 and process 1 will be
put on leaves sharing the same predecessor.

Function AggregateComMatrix(m,g)
Input: m // The communication matrix
Input: g // list of groups of (virtual) processes to merge

1 n ← NbGroups(g)
2 for i ← 0..(n − 1) do
3 for j ← 0..(n − 1) do
4 if i = j then
5 r[i, j] ← 0
6 else
7 r[i, j] ←

�
i1∈g[i]

�
j1∈g[j]

m[i1, j1]

8 return r

Then, we build the groups at depth 2, but we need to
aggregate the matrix m with the remaining communi-
cation beforehand. The aggregated matrix is computed
in the AggregateComMatrix Function. The goal is to
compute the remaining communication between each

Virt. Proc 0 1 2 3
0 0 1012 202 4
1 1012 0 4 202
2 202 4 0 1012
3 4 202 1012 0
(a) Aggregated matrix (depth 2)

Virt. Proc 0 1 2 3 4 5
0 0 1012 202 4 0 0
1 1012 0 4 202 0 0
2 202 4 0 1012 0 0
3 4 202 1012 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0

(b) Extended matrix

Virt. Proc 0 1
0 0 412
1 412

(c) Aggregated matrix (depth 1)

Fig. 10. Evolution of the communication matrix at different
steps of the algorithm

group of processes. For instance, between the first group
(0,1) and the second group (2,3) the amount of commu-
nication is 1012 and is put in r[0, 1] (see Figure 10(a)).
The matrix r is of size 4× 4 (we have four groups) and
is returned to be affected to m (line 7 of the TREEMATCH
algorithm). Now, the matrix m corresponds to the com-
munication pattern between groups of processes (called
virtual processes) built during this step. The goal of the
remaining steps of the algorithm is to group these virtual
processes up to the root of the tree.

Function ExtendComMatrix(T ,m,depth)
Input: T //The topology tree
Input: m // The communication matrix
Input: depth // current depth

1 p ← order of m
2 k ←arity(T ,depth+1)
3 return AddEmptyLinesAndCol(m,k,p)

The algorithm then loops and decrements depth to 2.
Here, the arity at depth 1 is 3 and does not divide the
order of m (4). Hence, we add two artificial groups that
do not communicate with any other groups. This means
that we add two lines and two columns full of zeroes to
the matrixm. The new matrix is depicted in Figure 10(b).
The goal of this step is to allow more flexibility in the
mapping, thus yielding a more efficient mapping.
Once this step is performed, we can group the vir-

tual processes (group of processes built in the previous
step). Here the graph modeling and the independent set
heuristics lead to the following mapping: {(0,1,4),(2,3,5)}.
Then we aggregate the remaining communication to
obtain a 2 × 2 matrix (see Figure 10(c)). During the
next loop (depth=1), we have only one possibility to
group the virtual processes: {(0,1)}, which is affected to
group[1].
The algorithm then goes to line 8. The goal of this

step is to map the processes to the resources. To per-
form this task, we use the groups array, which de-
scribes a hierarchy of groups of processes. A traversal of

this hierarchy gives the process mapping. For instance,
virtual process 0 (resp. 1) of group[1] is mapped on
the left (resp. right) part of the tree. When a group
corresponds to an artificial group, no processes will
be mapped to the corresponding sub-tree. At the end,
processes 0 to 7 are mapped to leaves (computing units)
0,2,4,6,1,3,5,7, respectively (see bottom of Figure 9(b)).
This mapping is optimal. The algorithm provides an op-
timal solution if the communication matrix corresponds
to a hierarchical communication pattern (processes can
be arranged in a tree, and the closer they are in this
tree the more they communicate), that can be mapped
to the topology tree (such as the matrix of Figure 9(a)).
In this case, optimal groups of (virtual) processes are
automatically found by the independent set heuristic,
as the corresponding weights of these groups are the
smallest among all the groups. Moreover, thanks to the
creation of artificial groups (line 5), we avoid the Packed
mapping 0,2,4,6,8,1,3, which is worse as processes 4 and
5 communicate a lot with processes 6 and 7 and hence
must be mapped to the same sub-tree. On the same
figure, we can observe that the Round Robin mapping,
which maps process i on computing unit i, leads also to
a suboptimal result.
The main cost of the algorithm is in the function

GroupProcesses. If k is the arity of the next level and
p is the order of the current communication matrix, the
complexity of this part is proportional to the number
of k-sized groups among a set of p elements and this
number is

�
p
k

�
= O(pk).

D.2 Optimizations

APPENDIX E
BANDWIDTH MEASUREMENTS BETWEEN COM-
PUTING UNITS

In Figure 11 we present timings measuring the band-

��

������

������

������

������

������

������

������

�� ��� ���� ����� ������ ������� ������ ������

�
�
�
�
�
��
��
��
�
��
�
�

�����

��

�����������
����������������������
���������������������

Fig. 11. ZEUS-MP/2 (metric: msg, 256 processes)

width obtained for transmitting a given number of bytes
on PLAFRIM using the NetPIPE9 tool. Three cases are

9. http://www.scl.ameslab.gov/netpipe/

k p∗ d∗

4 8 2
6 10 3
8 12 4
9 14 3
10 14 5
12 16 6
14 18 7
15 20 5
16 20 8
18 22 9
20 24 10
21 26 7
22 26 11
24 28 12
25 32 5
26 30 13
27 32 9
28 32 14
30 34 15
32 36 16
33 38 11
34 38 17
35 42 7
36 40 18
38 42 19
39 44 13
40 44 20
42 46 21
44 48 22
45 50 15
46 50 23
48 52 24

k p∗ d∗

49 58 7
50 54 25
51 56 17
52 56 26
54 58 27
55 62 11
56 60 28
57 62 19
58 62 29
60 64 30
62 66 31
63 68 21
64 68 32
65 72 13
66 70 33
68 72 34
69 74 23
70 74 35
72 76 36
74 78 37
75 80 25
76 80 38
77 86 11
78 82 39
80 84 40
81 86 27
82 86 41
84 88 42
85 92 17
86 90 43
87 92 29
88 92 44

k p∗ d∗

90 94 45
91 100 13
92 96 46
93 98 31
94 98 47
95 102 19
96 100 48
98 102 49
99 104 33
100 104 50
102 106 51
104 108 52
105 110 35
106 110 53
108 112 54
110 114 55
111 116 37
112 116 56
114 118 57
115 122 23
116 120 58
117 122 39
118 122 59
119 128 17
120 124 60
122 126 61
123 128 41
124 128 62
125 132 25
126 130 63
128 132 64

TABLE 2
Table of optimal tree division. Given a node of arity k it
tells above which number of processors p∗ it is useful to
divide this node into d∗ nodes of arity k/d∗. It is based on

the fact that ∀p ≥ p∗,
�
p
k

�
> d∗

�
p

k/d∗
�
.

shown, depending on whether the sender and the re-
ceiver share the same L3 cache, share a memory bank, or
are on different nodes. We see that the bandwidth is al-
ways the highest for the first case and always the lowest
for the last cases. Moreover, we see that the performance
is not linear (and not affine) in any cases. Overall, these
experiments strengthen the structural models exploited
by TREEMATCH compared to the quantitative approach
followed by other tools such as Scotch.

APPENDIX F
DISCUSSION ON THE TLEAF STRUCTURE OF
SCOTCH

To represent architectures, Scotch uses several formats.
When dealing with a hierarchical, tree-structured
topology, Scotch proposes the tleaf built-in definition. A
tleaf file is a single line file with the following syntax:
tleaf n a0 v0 . . .an−1 vn−1

There are n+1 levels in the tree (numbered from 0 to
n). The leaves are at the level n. ai (0 ≤ i ≤ n− 1) is the

cg.C.128 cg.D.128 ft.C.128 ft.D.128 lu.C.128 lu.D.128

Impact of network on processes placement with TreeMatch

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

0
50

10
0

15
0

20
0

1 switch, 16 nodes
2 switches, 8 nodes each

Fig. 12. Network fragmentation

arity of the ith level and vi (0 ≤ i ≤ n−1) is the traversal
cost between level i and i+ 1.
In our 128 computing unit experiments, we used two

tleaf structures:
• tleaf 4 16 4 2 3 2 2 2 1 for the scotch case
and,

• tleaf 4 16 500 2 100 2 50 2 10 for the
scotch w case.

Each tleaf has the same structure: five levels with
arity of intermediate nodes being 16, 2, 2 and 2. Only
costs between the levels change. However, this is mainly
a change in orders of magnitude. Nevertheless, the
scotch w tleaf leads to worse results than the scotch one
for the ZEUS/MP experiments as shown in Fig. 3.

APPENDIX G
EXPERIMENTAL VALIDATION: EXTENDED RE-
SULTS

G.1 Impact of network fragmentation
In Figure 12, we present the timings of several NAS
kernels on 128 computing units (16 nodes) for both
classes C and D. Two cases are studied. In the first, all the
nodes are on the same switch. In the second, computing
nodes are dispatched evenly on two switches, incurring
more costly communications. The solution computed by
TREEMATCH is the same in both cases. Results show
that, nevertheless, the impact on the performance for
these two cases is small, meaning that here, flattening
the network does not significantly hinder the result.

G.2 NAS parallel benchmarks results
In Section 5.2.2, we show the projection of the results for
the NAS kernels. In this section, we provide projections

Chaco MPIPP1 MPIPP5 Packed ParMETIS RR Scotch

0.
9

1.
0

1.
1

1.
2

1.
3 Size

Avg
Msg

Aggregated results by metrics

Placement methods

R
un

tim
e

ra
tio

 to
 T

re
eM

at
ch

Fig. 13. Average execution time ratio between
TREEMATCH and other placement methods for the NAS
benchmarks. Results projected by metrics (number of
messages, data size or average message size)

for other parameters: the various metrics (Figure 13),
the various classes (Figures 15 and 14) and the various
process counts considered (Figure 16).
In Figure 13, we show the ratios for the three metrics:

the amount of exchanged data (Size), the number of mes-
sages (Msg), and the average size of exchanged messages
(Avg). We see that except for the Avg metric for Packed
and RR all the medians are above 1. For the Size and Msg
metrics, almost 75% of the ratios are above one. Gains
of more than 10% in execution times are commonplace
while we lose more than 10% only in marginal cases.
The worst results are obtained when RR and Packed

policies are compared to TREEMATCH using the Avg
metric. The actual execution times are in general higher
for this metric than for the Size and Msg ones. Indeed,
RR and Packed methods do not depend on any metric
as they do not use the communication matrix but only
the computing units numbering. Hence, it is generally
better not to use the average message size metric for
computing the process placement. For this reason, we
have excluded this metric from Figures 14, 15, and 16.
In Figure 14, we see that the ratio over the other

metrics decreases when we increase the class (i.e., the
problem size). Indeed, the tested kernels are compute-
intensive ones, meaning that when increasing the input
size, the computation time grows faster than the commu-
nication time. As the process placement helps in improv-
ing the communication time, the gain is in proportion
less for large inputs than for small inputs. However,
if we display the difference between TREEMATCH and
the other methods we can see that the gain (in terms
of difference) is increasing along with the input size, as

Chaco MPIPP1 MPIPP5 Packed ParMETIS RR Scotch

0.
9

1.
0

1.
1

1.
2

1.
3 Class C

Class D

Aggregated results by classes

Placement methods

R
un

tim
e

ra
tio

 to
 T

re
eM

at
ch

Fig. 14. Average execution time ratio between
TREEMATCH and other placement methods for the NAS
benchmarks. Results projected by Class (C: average
problem size, D: large problem size). Metric Avg excluded

Chaco MPIPP1 MPIPP5 Packed ParMETIS RR Scotch

0
5

10

Class C
Class D

Aggregated results by classes

Placement methods

D
iff

er
en

ce
 to

 T
re

eM
at

ch

Fig. 15. Average execution time difference between
TREEMATCH and other placement methods for the NAS
benchmark. Results projected by Class (C: average prob-
lem size, D: large problem size). Metric Avg excluded.

shown in Figure 15.
In Figure 16, we see what happens when the number

of processes increases. The main result from this figure
is that the discrepancy of the ratios tends to increase
along with the number of processes. Actually, most of
the cases with a ratio greater than one tend to keep
a ratio greater than one when we change the number

Chaco MPIPP1 MPIPP5 Packed ParMETIS RR Scotch

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

64 processes
128 processes
256 processes

Aggregated results by numbers of processes

Placement methods

R
un

tim
e

ra
tio

 to
 T

re
eM

at
ch

Fig. 16. Average execution time ratio between
TREEMATCH and other placement methods for the NAS
benchmarks. Results projected by number of processes
(64, 128, 256). Metric Avg excluded.

of processes. One of the explanations for the distance
to 1.0 increasing with the number of processes is that
the computation to communication ratio decreases and
effects due to communication are therefore more visible
with higher numbers of processes.
Other noticeable results are that MPIPP1 is worse

than MPIPP5 whilst Chaco is the worst method of all.
Last, ParMETIS does not guarantee that the computed
partitions are of equal sizes because it is not designed
to produce such partitions. This would explain the poor
results achieved with this partitioner.

