
Argonne Leadership Computing Facility1

Parallel I/O on Theta with Best 
Practices

Argonne Leadership Computing Facility1

Paul Coffman

pcoffman@anl.gov

Francois Tessier, Preeti Malakar, George Brown

ALCF



Argonne Leadership Computing Facility2

Parallel IO Performance on Theta dependent on  
optimal Lustre File System utilization with 
potential use cases for node local SSDs

— Theta IO Architecture and Component Overview
— Theta Lustre File System Access Basics
— Cray MPI-IO, Tuning and Profiling, IO Libraries
— Lustre Performance Investigations,  Analysis and 

Best Practices
— Theta Node Local SSD Utilization



Argonne Leadership Computing Facility3

Storage vs Computation Trend



Argonne Leadership Computing Facility4

Theta IO Architecture and Component Overview

Basic overview of Lustre File System and the component configuration on theta.



Argonne Leadership Computing Facility5

Lustre File System Basic Components



Argonne Leadership Computing Facility6

Lustre Architecture On Theta
• IO Forwarding from 

compute node to LNET 

Service Node / Router

• LNet Aries NIC on 

compute side, 2 IB 

links on Object 

Storage Server 

(OSS) side

• OSS handles 

communication from 

LNet Router to 

Object Storage 

Target (OST) which 

is the physical 

storage device

• Although there are 4 

MDTs only 1 

currently has 

directories placed on 

it



Argonne Leadership Computing Facility7

LUSTRE Specifications on Theta

theta-fs0 - project file system

– /lus/theta-fs0/projects

– Sonexion Storage

• 4 cabinets

• 10 PB usable RAID storage

• Total Lustre HDD Performance Write BW 172 GB/s Read 

BW 240 GB/s

▪ 56 OSS Peak Performance 6 GB/s each

▪ Node local client  and OSS cache go a lot higher

– No project quotas, no backups yet available on lustre

• /home is GPFS and backed up with 7 rolling daily snapshots

• Group quotas sometimes enforced based on the project

▪ lfs quota -h -g <group_name> /lus/theta-fs0



Argonne Leadership Computing Facility8

Lustre File operation flow

Posix Write Posix Read



Argonne Leadership Computing Facility9

Theta Lustre File System Access Basics

Overview of basic Lustre File System interaction and key performance features .



Argonne Leadership Computing Facility10

Striping concepts – key to 
performance

Striping pattern = count 

and size

Count is number of OSTs 

(storage devices) used to 

store/access the file

Size is the width of each 

contiguous access on the 

OST

File is striped across OSTs

8 MB file

OST0 OST1 OST3OST2

Stripe count =4
OST0 OST1 OST3OST2

OST0 OST1 OST3OST2

Stripe count = 8

OST4 OST5 OST7OST6

Example:

Stripe size = 1mb, total file size being written 8mb



Argonne Leadership Computing Facility11

Lustre file system utility (lfs)

 http://doc.lustre.org/lustre_manual.pdf

 Run from login node

 lfs help

 List OSTs in file system

 lfs osts <path>

 Set/Get striping information

 Search directory tree

 Check disk space usage

 lfs –version

 lfs 2.7.2.26



Argonne Leadership Computing Facility12

lfs setstripe / getstripe example

thetalogin4> mkdir stripecount4size8m

thetalogin4> lfs setstripe -c 4 -S 8m stripecount4size8m

thetalogin4> cd stripecount4size8m/

thetalogin4/stripecount4size8m> lfs getstripe .

.

stripe_count:   4 stripe_size:    8388608 stripe_offset:  -1

thetalogin4/stripecount4size8m> touch file1

thetalogin4/stripecount4size8m> touch file2

• Files created in same directory can be striped across 
different OSTs (shown in next slide) 

lfs getstripe <file/dir name>
lfs setstripe --stripe-size <size> --count <count> 
<file/dir name>



Argonne Leadership Computing Facility13

lfs setstripe / getstripe example continued
thetalogin4/stripecount4size8m> lfs getstripe .
.
stripe_count:   4 stripe_size:    8388608 stripe_offset:  -1
./file1
lmm_stripe_count:   4
lmm_stripe_size:    8388608
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  20

obdidx objid objid group
20        39462252      0x25a256c                0
24        39465932      0x25a33cc                0
30        39460521      0x25a1ea9                0
38        39461956      0x25a2444                0

./file2
lmm_stripe_count:   4
lmm_stripe_size:    8388608
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  35

obdidx objid objid group
35        39455744      0x25a0c00                0
51        39440356      0x259cfe4                0
13        39487313      0x25a8751                0
47        39465748      0x25a3314                0



Argonne Leadership Computing Facility14

Striping implementation notes

 Make sure to use /project file system not /home

 /project is production lustre file system, /home is GPFS for development

 Default: stripe_count: 1 stripe_size: 1048576 

 Manage from command line on file or directory scope via lfs

 Manage from code

 Cray MPI-IO info hints striping_unit, striping_factor (eg MPICH_MPIIO_HINTS=*: 
striping_unit=8388608: striping_factor=48) on file creation

 Can do ioctl system call yourself passing LL_IOC_LOV_SETSTRIPE with structure for 
count and size -- ROMIO example:

 https://github.com/pmodels/mpich/blob/master/src/mpi/romio/adio/ad_lustre/ad_lustr
e_open.c#L114

 Files and directories inherit striping patterns from the parent directory

 File cannot exist before setting striping pattern

 Properties set in MDS on file creation

 Stripe count cannot exceed number of OSTs (56)

 lfs osts

 Striping cannot be changed once file created

 Need to re-create file – copy to directory with new striping pattern to change it



Argonne Leadership Computing Facility15

Lustre file system caching

 Lustre cache hierarchy - node client and OSS
 Node client cache effect impacted by application, shares node DRAM

 Depending on access pattern can see widely varying performance based on cache utilization
 For writes, MPI_File_sync, posix fsync (force write to disk) calls negate all cache effects 

and force write to HDD
 Write call (mpi-io or posix) for limited data sizes may return with only local cache 

updated – very fast
 OSS cache utilization impacted by other users
 Understand when your application is fsync’ing in underlying IO  libraries or directly in 

your code
 For reads on a file, will have to come from HDD unless very recently written

 Generally no cache effect for real applications – ie reading initial data file
 IO Benchmarks such as IOR often show this cache effect though if they are run in 

both write and read mode
 ior –C to re-order rank read, or write run with –K and then separate read run and 

eliminate cache effects



Argonne Leadership Computing Facility16

Extent lock contention

• Each rank (client) needs its own lock when accessing striped data for a given file on an OST

• If more than one rank concurrently accesses same file on OST, causes extent lock 

contention

• Concurrent access improves storage bandwidth

• Extent Locks managed by OSS with (LDLM) Lustre Distributed Lock Manager (LDLM)

• The LDLM provides a means to ensure that data is updated in a consistent fashion across 

multiple OSS  and OST nodes

• Following slides detail simple example illustrating this issue

• File with 1 stripe existing entirely on 1 OST accessed by 2 ranks

• Cray MPI-IO has a current limited mitigation for this (cray_cb_write_lock_mode=1 – shared 

lock locking mode – will be discussed later)

• Extent locks aren’t’ an issue until data reaches the server

• If all data locally cached won’t see this overhead



Argonne Leadership Computing Facility17

Extent lock contention continued



Argonne Leadership Computing Facility18

Extent lock contention continued



Argonne Leadership Computing Facility19

Extent lock contention continued



Argonne Leadership Computing Facility20

Extent lock contention continued



Argonne Leadership Computing Facility21

Extent lock contention continued



Argonne Leadership Computing Facility22

Extent lock contention continued



Argonne Leadership Computing Facility23

Cray MPI-IO, tuning and profiling, io libraries

Overview  of Cray MPI-IO, tuning with Cray MPI-IO, profiling within Cray MPI-IO and externally, and 

sample IO libraries available on Theta.



Argonne Leadership Computing Facility24

Cray MPI-IO Overview

 Rest of presentation will focus alot on large shared file performance with Cray MPI-IO

 Theta is Cray machine, Cray stack, Cray Programming Environment -- Cray MPI-IO commonly used 

 Based on MPICH-MPIIO (ROMIO)

 Facilitates parallel single shared file access

 Independent

 Each process accesses file directly – eg MPI_File_write_at

 Collective

 Data is aggregated to or from subset of processes which optimally access the file – eg
MPI_File_write_at_all

 Can aggregate a lot of small file accesses from several ranks to single large stripe-sized 
(aligned) access from single rank

 Can turn collective IO off without changing code via hints

 romio_cb_read=disable, romio_cb_write=disable (default is auto determine at runtime)

 Many tuning parameters

 man intro_mpi

 Underlying IO layer for many IO libraries

 HDF5, PNetCDF

 Tuning Cray MPI-IO improves performance of IO libraries



Argonne Leadership Computing Facility25

Cray MPI-IO Collectives

 MPI_File_*_all calls

 Facilitates optimal aligned striped access

 Can aggregate smaller and discontiguous per-process chunks of data into contiguous stripe-
size file access

 Default number of aggregators set to match stripe_count (1 client per OST) and size set to stripe 
size

 Number of aggregator nodes (cb_nodes hint) defaults to the striping factor (count) and can 
be changed

 cray_cb_nodes_multiplier hint increases number of aggregators per stripe (multiple clients 
per OST)

 Total aggregators = cb_nodes x cray_cb_nodes_multiplier

 Collective buffer size is the stripe size --- cb_buffer_size hint is ignored

 ROMIO collective buffer still allocated with cb_buffer_size but not used

 Can choose to run MPICH MPI-IO (ROMIO) instead – can see the open source code to know 
what it is doing

 cb_align=3, all ROMIO hints apply



Argonne Leadership Computing Facility26

Key Cray MPI-IO Profiling and Tuning Environment 

variables 

• Cray MPI-IO provides many environment variables to gain insight into performance

• MPICH_MPIIO_STATS=1

• MPI-IO access patterns for reads and writes written to stderr by rank 0 for each file 

accessed by the application on file close

• MPICH_MPIIO_STATS=2

• set of data files are written to the working directory, one file for each rank, with the 

filename prefix specified by the MPICH_MPIIO_STATS_FILE env var

• MPICH_MPIIO_TIMERS=1

• Internal timers for MPI-IO operations, particularly useful for collective MPI-IO

• MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1

• MPICH_MPIIO_AGGREGATOR_PLACEMENT_STRIDE

• MPICH_MPIIO_HINTS=<file pattern>:key=value:…

• MPICH_MPIIO_HINTS_DISPLAY=1



Argonne Leadership Computing Facility27

MPICH_MPIIO_STATS=1 Sample Output for IOR

+--------------------------------------------------------+

| MPIIO write access patterns for testFile

|   independent writes      = 0

|   collective writes       = 4096

|   independent writers     = 0

|   aggregators             = 48

|   stripe count            = 48

|   stripe size             = 1048576

|   system writes           = 4096

|   stripe sized writes     = 4096

|   aggregators active      = 0,0,0,4096 (1, <= 24, > 24, 48)

|   total bytes for writes  = 4294967296 = 4096 MiB = 4 GiB

|   ave system write size   = 1048576

|   read-modify-write count = 0

|   read-modify-write bytes = 0

|   number of write gaps    = 0

|   ave write gap size      = NA

+--------------------------------------------------------+



Argonne Leadership Computing Facility28

MPICH_MPIIO_TIMERS=1 Sample Output for IOR
| MPIIO write by phases, all ranks, for testFile

|   number of ranks writing        =    48

|   number of ranks not writing    =  4048

|   time scale: 1 = 2**1     clock ticks    min         max         ave

|                                    ---------- ---------- ---------- ---

|   total                          =                          515639319

|

|   imbalance                      =      70473     4113200     4038142  0%

|   open/close/trunc =   20449942    21682440    20547164  3%

|   local compute                  =    1264081    72814196     7986327  1%

|   wait for coll =     342868   469936675   261193401 50%

|   collective                     =    5040048     7905176     6537893  1%

|   exchange/write                 =    2857647    32294255     3413887  0%

|   data send (*)                  =    6250725   403979537   205475108 39%

|   file write                     =          0   235316380   226898464 44%

|   other                          =      49224     5699284     3788427  0%

|

|   data send BW (MiB/s)           =                          12967.254

|   raw write BW (MiB/s)           =                          11742.909

|   net write BW (MiB/s)           =                           5167.271

|

| (*) send and write overlap when number ranks != number of writers

+--------------------------------------------------------------------------+



Argonne Leadership Computing Facility29

Craypat IOR Collective MPI-IO 
Profiling for Read

Table 5:  File Input Stats by Filename

Time |  Read MBytes |    Read Rate |   Reads |  Bytes/ Call | File PE

0.645434 | 1,280.719242 | 1,984.275263 | 9,952.0 |   134,940.86 | Total

|-----------------------------------------------------------------------------

| 0.585577 | 1,280.000000 | 2,185.878594 | 1,280.0 | 1,048,576.00 | testFile

||----------------------------------------------------------------------------

|| 0.076877 |   160.000000 | 2,081.242606 |   160.0 | 1,048,576.00 | pe.16

|| 0.074686 |   160.000000 | 2,142.314659 |   160.0 | 1,048,576.00 | pe.17

…..

▪ module load perftools

▪ pat_build –w –g io –g mpi <binary name>

▪ pat_report –s pe=ALL <pat-dir-name>

Shows the total and 

individual aggregator 

process read bandwidth in 

MB/s



Argonne Leadership Computing Facility30

Craypat IOR Collective MPI-IO 
Profiling for Write

Table 6:  File Output Stats by Filename (maximum 15 shown)

Time | Write MBytes | Write Rate |  Writes |  Bytes/ Call | File PE

6.459586 | 1,280.249772 | 198.193774 | 6,612.0 |   203,030.73 | Total

|-----------------------------------------------------------------------------

| 6.376338 | 1,280.000000 | 200.742172 | 1,280.0 | 1,048,576.00 | testFile

||----------------------------------------------------------------------------

|| 0.838935 |   160.000000 | 190.718093 |   160.0 | 1,048,576.00 | pe.32

|| 0.801623 |   160.000000 | 199.595064 |   160.0 | 1,048,576.00 | pe.48

…

▪ module load perftools

▪ pat_build –w –g io –g mpi <binary name>

▪ pat_report –s pe=ALL <pat-dir-name>

Shows the total and 

individual aggregator 

process write bandwidth in 

MB/s



Argonne Leadership Computing Facility31

Darshan Profiling

• https://www.alcf.anl.gov/user-guides/darshan

• An open-source tool developed for statistical profiling of I/O

• Designed to be lightweight and low overhead

• Finite memory allocation for statistics (about 2MB) done during MPI_Init

• Overhead of 1-2% total to record I/O calls

• Darshan does not create detailed function call traces

• No source modifications

• ‘module list’ should show darshan

• Uses PMPI interfaces to intercept MPI calls

• Use ld wrapping to intercept POSIX calls

• Can use dynamic linking with LD_PRELOAD=$DARSHAN_PRELOAD  

instead

• Stores results in single compressed log file 

https://www.alcf.anl.gov/user-guides/darshan


Argonne Leadership Computing Facility32

Darshan Profiling Continued

• Make sure postscript-to-pdf converter is loaded

• module load texlive

• IO characterization file placed here at job completion: /lus/theta-

fs0/logs/darshan/theta/<YEAR>/<MONTH>/<DAY> with format 

<USERNAME>_<BINARY_NAME>_id<COBALT_JOB_ID>_<DATE>-

<UNIQUE_ID>_<TIMING>.darshan

• darshan-job-summary.pl command for charts, table summaries

• darshan-job-summary.pl <darshan_file_name> --output 

darshansummaryfilename.pdf

• darshan-parser for detailed text file

• darshan-parser <darshan_file_name>  > darshan-details-filename.txt



Argonne Leadership Computing Facility33

Darshan-job-summary.pl Example Using IOR Collective 

MPI-IO



Argonne Leadership Computing Facility34

Theta IO Libraries
Cray PE  offers several pre-built I/O libraries

module avail, module list, module load

– HDF5

• cray-hdf5-parallel/1.10.1.1

– NetCDF

• cray-netcdf/4.4.1.1.6(default)

– PNetCDF

• cray-parallel-netcdf/1.8.1.3(default)

– Adios

These libraries offer capabilities to make managing large parallel I/O easier

Pay attention to MPI-IO settings

– HDF5 allows user to specify independent or collective IO for raw data and metadata

• Raw data can be written collectively via property list

▪ hid_t xferPropList = H5Pcreate(H5P_DATASET_XFER);

▪ H5Pset_dxpl_mpio(xferPropList, H5FD_MPIO_INDEPENDENT); or 

H5Pset_dxpl_mpio(xferPropList, H5FD_MPIO_COLLECTIVE);

• Metadata can be written collectively via H5Pset_all_coll_metadata_ops, 

H5Pset_coll_metadata_write as of release 1.10.0



Argonne Leadership Computing Facility35

Lustre performance investigations,  analysis and best 

practices
In-depth charts and explanations for various performance characteristics exhibited on Theta Lustre

utilizing various benchmarks, primarily IOR.



Argonne Leadership Computing Facility36

Dragonfly Network and Lustre Jitter 

 Network and Lustre shared with and impacted by other users

 No job isolation

 Currently 1 Metadata Sever (MDS) shared by all users

 Performance for a particular transaction easily bottlenecked by traffic 
surge to MDS or one of your OSSs

 Only way to truly minimize jitter is to have the system to yourself

 No impact then from other users

 When running IO performance tests run several iterations best result 
usually represents least jitter

 Best result is the one that basically had minimal interfence in network 
or lustre from other users



Argonne Leadership Computing Facility37

Lustre OSS N007 activity – 5 sec 
intervals 24-hour time period 2017-

02-06 of OSS traffic on a 

particular server, pattern is 

typical of other servers. At 

this time lustre utilization 

relatively low, about 100 

mb/s with spikes to 500 

mb/s.



Argonne Leadership Computing Facility38

File storage approaches

• File-per-process (FPP)

• scales well in Lustre, shared file has issues with extent lock contention and MDS overhead

• FPP scales well as ranks exceed number of OSTs multiple ranks can write to same OST but within 

separate files without extent lock contention issue

• FPP has management and consumption issues at scale with sheer number of files

• Single shared file

• MPI-IO most common for access

• Independent vs Collective

• Weigh cost of collective aggregation against optimization of LFS access

• For small discontiguous chunk data collective faster

• For larger contiguous data independent read has no lock contention may be faster

• Also LFS node caching may mitigate extent lock issues for write

• If rank data is stripe aligned independent writes may also be faster

• Experiment – implement collective calls (MPI_File_*_all) and then turn off collective 

aggregation via romio_cb_write and romio_cb_read hints to see which performs better



Argonne Leadership Computing Facility39

File storage approaches continued

• Multiple shared files (subfiling)

• Instead of one large shared file accessed by all processes, use multiple 

shared files individually accessed by subsets of processes

• Less MDS overhead than one big shared file

• More manageable than file-per-process

• Typical implementation: sub-comm with collective MPI-IO for each file

• Many IO libraries currently write singe shared file (HFD5, PNetCDF)

• Shared file extent lock contention issues at the server with > 1 client per OST

• Only 1 rank at a time can optimally access stripe set on OST

• With > 1 client per OST, writes are serialized due to LDLM extent lock 

design in Lustre and performance worse than single client with lock 

exchange latency overhead



Argonne Leadership Computing Facility40

General Striping approaches

 For shared files, in general more stripes are better and larger stripes (to a point) are better

 Don’t exceed node count with stripe count

 Start with 1mb stripe size, increase stripe count to 48

 Don’t go to full 56 as lustre will bypass assigning slow OSTs to the file at file creation 
time, going to 48 leaves room for this

 For this reason don’t explicitly choose OSTs during setstripe, let lustre do it for you

 Once using 48 OSTs, increase stripe size to between 8 and 32 mb

 Cray MPI-IO collective buffer is stripe size – potential memory impact for large stripes 
and collective io

 For file-per-process just use 1 stripe

 Place small files on single OST

 Place directories containing many small files on single OSTs (Such as extracting source code 
distributions from tarballs)

 Minimize MDS overhead



Argonne Leadership Computing Facility41

Shared File Stripe Size vs Count 
Affect on Performance Stripe count more important 

than stripe size

For this example, best 

results are 48 OST 8mb 

stripe

Experiment!



Argonne Leadership Computing Facility42

IOR MPI-IO Collective vs 
Independent 1 MB Stripe Size Local node client cache 

effect exhibited here

Collective write only better 

for smaller transfers (100k)

Independent better for 

larger transfers, 

independent extent lock 

contention mitigated by 

collective aggregation 

overhead and local cache 

effects

Collective write actually 

worse for transfer size > 

stripe size (8mb)

IOR on 256 nodes 16 ppn 48 OSTs

0

50

100

150

100 300 1024 (aligned with
stripe)

8192

B
W

 (
G

B
/s

) 

Transfer Size (KB)

IOR MPI-IO Collective vs Independent BW

Coll Write Coll Read Indep Write Indep Read



Argonne Leadership Computing Facility43

IOR MPI-IO Collective vs 
Independent 8 MB Stripe Size Compared with previous 

slide, larger stripe size (8m 

vs 1m) and shows results 

for larger data transfer 

(512m)

Larger  stripe size helps 

independent more than 

collective for large data size

At 512m lose some of local 

client cache effect on 

independent write

IOR on 256 nodes 16 ppn 48 OSTs

0

50

100

150

200

250

300

300 1024 8192  (aligned
with stripe)

512m

B
W

 (
G

B
/s

) 

Transfer Size (KB)

IOR MPI-IO Collective vs Independent BW

Coll Write Coll Read Indep Write Indep Read



Argonne Leadership Computing Facility44

IOR MPI-IO Collective vs 
Independent 1024 Nodes 8 MB Stripe

Compared with previous 

slide, due to node local 

client caching independent 

continues to scale well past 

OST HDD max BW (nearly 

double)

IOR on 1024 nodes 16 ppn 48 OSTs

0

100

200

300

400

500

600

700

100 300 1024 8192  (aligned
with stripe)

B
W

 (
G

B
/s

) 

Transfer Size (KB)

IOR MPI-IO Collective vs Independent BW

Coll Write Coll Read Indep Write Indep Read



Argonne Leadership Computing Facility45

IOR Independent MPI-IO Effect of Lustre Caching

IOR 256 Nodes 16 PPN 48 OSTs 8 MB Stripe Size

At 8mb transfer size full cache effect BW decreases significantly for HDD

At 512mb transfer size not getting full cache effect on write BW doesn’t go down for HDD

0

50

100

150

200

250

300

350

400

8192  (aligned with stripe) 512m

B
W

 (
G

B
/s

) 

Transfer Size (KB)

IOR with Lustre Cache Effects

Independent Write Independent Read

0

50

100

150

200

250

300

350

400

8192  (aligned with stripe) 512m

B
W

 (
G

B
/s

) 

Transfer Size (KB)

IOR No Lustre Cache Effects - write file sync 
and read task reorder (-e -C)

Independent Write Independent Read



Argonne Leadership Computing Facility46

MPI-IO Collective vs Independent 
discontiguous data E3SM Climate Modeling ParellelIO

Library performance test tool (pioperf)

Run with data decomposition generated 

from E3SM running on 8192 ranks with 

about 350K of highly non-contiguous 

data

Data is non-contiguous in local buffer 

and non-contiguous across shared file –

every rank accesses every stripe

PNetCDF interface used over MPI-IO 

backend

‘Write/Read All Ranks’ means no pre-

aggregation before MPI-IO call

‘Write/Read All Nodes’ means pre-

aggregation of 32 ranks of data to node 

first, MPI-IO over subcomm of 1 rank per 

node

romio_ds_write=auto hint in effect as of 

Cray-MPI 7.7.0 – makes decision on 

data sieving for independent IO

pioperf on 256 nodes 32 ppn 48 OSTs 8 MB Stripe 

3 GB shared file

0

100

200

300

400

500

600

700

Collective Independent

B
W

 (
M

B
/s

)

E3SM ParallelIO Tester MPI-IO Collective vs Independent

Write All Ranks

Read All Ranks

Write All Nodes

Read All Nodes



Argonne Leadership Computing Facility47

Cray Collective MPI-IO Shared Lock Utilization

 Shared lock locking mode. A single lock is shared by all MPI ranks that are writing the file

 Hint: cray_cb_write_lock_mode=1 

 Default is 0 for standard lock locking mode.

 Enables multiple clients (aggregators) to simultaneously write to the same file with no extent 
lock contention

 Use cray_cb_nodes_multiplier

 Limitations

 All accesses to the file must be via collective io

 romio_no_indep_rw must be set to true

 Any non-collective mpi-io will cause abort or hang

 HDF5 and PNetCDF currently rely on at least some indepenant access (eg HDF5 
meta-data)  and therefore cannot use this setting

 Darshan won’t work because of independent write.

 Sample hints settings: export 
MPICH_MPIIO_HINTS=*:cray_cb_write_lock_mode=1:cray_cb_nodes_multiplier=4:romio_n
o_indep_rw=true



Argonne Leadership Computing Facility48

IOR MPI-IO Collective Shared Lock 
Performance Tests ‘Raw File Write’ and ‘Raw 

File Read’ times taken from 

MPICH_MPIIO_TIMERS=1 

trace

Raw File write linearly 

better - MPI-IO 1.5x faster 

at 4

Raw File read gets worse -

Cray issue with cache 

reads being investigate by 

Cray

IOR on 256 nodes 16 ppn 48 OSTs 1MB 

Stripe 1 MB Transfer size

0

20

40

60

80

100

120

1 2 3 4

B
W

 (
G

B
/s

) 

cray_cb_nodes_multiplier

IOR Lustre Shared Lock MPI-IO BW

MPI-IO Write Raw File Write MPI-IO Read Raw File Read



Argonne Leadership Computing Facility49

FPN Subfiling --- equivalent FPP 
performance but more manageable Note the Log scaling on Y 

axis

Shared file is collective 

MPI-IO

File-Per-Node (FPN) and 

File-Per-Process (FPP) 

much faster but have to 

manage a lot of files



Argonne Leadership Computing Facility50

Theta Node-Local SSD Utilization

Description of methodology for SSD  utilization and performance charts.



Argonne Leadership Computing Facility51

Node Local SSDs on Theta – NOT a Burst Buffer

 Local 128 GB SSD attached to each node

 Need to be granted access – PI contact support@alcf.anl.gov

 https://www.alcf.anl.gov/user-guides/running-jobs-xc40#requesting-local-ssd-
requirements

 Cray Datawarp requires burst buffer nodes

 Flash storage attached to specialized nodes in the fabric

 Allows for shared files to be striped across multiple burst buffer nodes as 
tiered storage in front of Lustre - eg Cori at NERSC

 No utility currently in place for tiered storage

 Under investigation

 Requires explicit manual programming

 Most useful to store local intermediate files (scratch)

 Data deleted with cobalt job terminates



Argonne Leadership Computing Facility52

Node Local SSD Usage 

●To request SSD, add the following in your qsub command line:

--attrs ssds=required:ssd_size=128

– This is in addition to any other attributes that you are setting for a job, including 

MCDRAM and NUMA modes.  ssd_size is optional and may be omitted.

●The SSD are mounted on /local/scratch on each node

●SSD are emptied between allocations (job lifetime persistency)

●I/O Performance (One process): Read 1.1 GB/s – Write 175 MB/s

● Can scale to two process: Read 2.2 GB/s, Write 350 MB/s

●Outperforms the Lustre file-system as scale (aggregated bandwidth)

●Node-limited scope, so may imply some work: sub-communicator per node, subfiling



Argonne Leadership Computing Facility53

Node SSD vs Lustre File-Per-
Process Performance Need 2 processes to drive 

SSD Max Bandwidth

Bandwidth number includes 

time to open, write/read, 

and close the file

After MDS overhead 

mitigated with larger data 

size SSD write is equal and 

read is close at 256 nodes

SSD performance scales 

past Lustre at 1024 nodes



Argonne Leadership Computing Facility54

CONCLUSION

Currently key to Io performance on theta is optimal 

Lustre File System access

• No tiered storage burst buffer implementation yet

• Understand and tune how your application is using 

Lustre

• Striping

• Cray MPI-IO

• IO Libraries

ALCF Staff is available to help!


