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Abstract—Reading and writing data efficiently from different
tiers of storage is necessary for most scientific simulations to
achieve good performance at scale. Many software solutions
have been developed to decrease the I/O bottleneck. One well-
known strategy, in the context of collective I/O operations, is
the two-phase I/O scheme. This strategy consists of selecting
a subset of processes to aggregate contiguous pieces of data
before performing reads/writes. In our previous work, we
implemented the two-phase I/O scheme with a MPI-based
topology-aware algorithm. Our algorithm showed very good
performance at scale compared to the standard I/O libraries
such as POSIX I/O and MPI I/O. However, the algorithm
had several limitations hindering a satisfying reproducibility
of our experiments. In this paper, we extend our work by 1)
identifying the obstacles we face to reproduce our experiments
and 2) discovering solutions that reduce the unpredictability
of our results.

Keywords-reproducibility; performance variability; parallel
I/O; data aggregation; interference;

I. INTRODUCTION

The problem of reproducibility in scientific research is
of paramount importance. It gives the scientists an essential
level of intellectual and scientific honesty and the published
results engage the legitimacy of the scientific community.
Ensuring reproducibility allows one to independently con-
firm a set of experiments and can offer the community the
confidence to fully appreciate the outcomes of a research.
Reproducible results are also useful to provide researchers
with confidence in their own results as well.

Reproducible results and performance are two areas of
interest in scientific computing. In this paper, we address the
issues involved in the reproducibility of I/O performance for
scientific computing. This is a challenging problem as there
are several layers of software and hardware involved in the
I/O stack, including the runtimes systems, the interconnect
and storage topology, and the filesystem. All these make
reproducible and portable I/O a challenging problem.

Reproducibility in I/O performance is critical given the
importance of I/O in computational science. Simulations in
scientific domains such as climate science, neuroscience,
and computational cosmology have increasingly large I/O
requirements.

Table I depicts three examples of the data volumes gen-
erated by applications. Typically, we estimate the wall time
spent in I/O around 10% to 20%. Thus, converging to a
stable I/O performance is essential, particularly at scale and
regarding the upcoming architectures.

Table I: I/O requirements of diverse large-scale applications

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

In this paper, we present our work in optimizing I/O
on large-scale supercomputers and share our experience

in facing reproducibility challenges we have faced. We
elucidate these issues and draw lessons about the necessity
of a strong knowledge of the architecture or about the
impact of input parameters in results’ variability. We also
propose some guidelines, and in some cases we augment this
with the help of a micro-benchmark to emphasize specific
characteristics.

II. RELATED WORKS

The growing amout of data generated by large-scale
simulations makes parallel I/O a critical topic to address.
Research has been conducted on this topic for several years,
whether it be at the file system level with solutions designed
for HPC such as GPFS [1] or Lustre [2] or at a runtime level
with parallel I/O library like MPI I/O included in the MPI-
2 [3] standard. In MPI I/O, collective I/O is a significant
research area as it allows to improve performance. A number
of algorithms have been developed to optimize collective
I/O. Venkatesan et al. [4] have proposed an approch based
on process placement while Isaila et al. [5] have chosen to
combine autotuning with machine learning techniques. From
a more general point of view, studies have been made to
evaluate various collective I/O algorithms [6]. As for us, we
have focused our work [7] on a topology-aware optimized
implementation of the major two-phase I/O scheme [8].

Reproducibility in computer science has been studied for
years [9]. Several aspects have been addressed such as the
free licences of scientific innovation [10], the reproducibility
of results in numerical libraries like BLAS [11] or the
reproducibility of performance in HPC [12], [13].

This paper is focusing on this last topic and specifically
on reproducibility of I/O performance. Several problems
have already been studied for I/O, but often without the
reproducibility perspective. For instance, Yildiz et al. have
proposed to study the causes of I/O interference [14].
Another work has focused on a scheduling model reducing
I/O interferences between HPC applications [15] leading to
more stable performance. Some work has also been done
to re-think the software stack managing I/O in a unified
way [16].

In this paper, we propose to study these challenges from
a reproducibility point of view through our experience with
the topology-aware I/O library we previously developed.

III. CONTEXT AND MOTIVATION

MPI [3] is commonly used to implement large-scale
distributed memory applications on high-performance clus-
ters. MPI I/O is a critical component to perform I/O. The
collective I/O mechanism in MPI I/O helps applications
effectively read and write data at scale. In collective I/O,
all MPI tasks involved in the communicator call the I/O
routine, typically in a bulk synchronous manner. This type
of operation allows the MPI runtime system to optimize
data movement based on knowledge from the application



including parameters such as data size, and the layout in
both memory and on storage.

The Two-phase I/O algorithm is a well-known and ef-
ficient optimization available in MPI I/O implementations
such as ROMIO [17]. It consists in selecting a subset of pro-
cesses to aggregate contiguous pieces of data (aggregation
phase) before writing them to the storage system (I/O phase).
Figure 1 depicts this technique using an illustrative example
involving four processes, two of them being chosen as
aggregators. Thus, the network contention decreases around
the storage system while the I/O bandwidth is substantially
increased by the write of large chunks of contiguous data.
However, this approach as it has been implemented suffers
several limitations. First, even if the I/O performance is
better compared to an unoptimized operation, it usually
remains far from the peak I/O bandwidth achievable. Second,
we noticed an inefficient aggregator placement policy even
though a smart aggregators mapping may have a real impact
on performance. Finally, the common implementations fail
to take advantage of the data model, the data layout, and the
memory hierarchy.
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Figure 1: Two-phase I/O mechanism

Our previous work [7] focused on the two-phase I/O
scheme and proposed to address several of these limitations.
We developed an I/O library on top of MPI I/O implement-
ing a topology-aware two-phase I/O scheme optimized for
large-scale supercomputers. This library has been created
following two key directions: an efficient implementation of
the two-phase I/O algorithm and an improved aggregator
placement taking into account system characteristics. We
next describe these two points and present results obtained
from our experiments on the Mira Blue Gene/Q supercom-
puter at the Argonne National Laboratory. Finally, we will
introduce the challenges we encountered to ensure a satis-
fying reproducibility and a good performance portability.

A. Implementation of the Two-phase I/O scheme

In comparison to the MPI standard, our approach requires
the description of the upcoming I/O operations before per-
forming read or write calls. We extract from this information
the data model (multidimensional arrays, meshes, ...) and the

data layout (array of structures, structure of arrays). These
data patterns allow us to determine better I/O scheduling and
to reduce the idle time for all the MPI tasks. Additionally, we
improved both the aggregation and I/O phases by overlap-
ping them. With this aim in mind, we allocate two buffers per
aggregator and supply them as a pipeline: while aggregating
data in the first buffer, an aggregator can flush the second one
to the storage system concurrently. This can be done with
one-sided MPI communication (Remote Memory Access)
to aggregate data in the aggregators’ buffers and, thanks to
non-blocking MPI I/O functions, to effectively read or write
buffers in file.

B. Topology-aware aggregators placement

The second main contribution of this work on data ag-
gregation concerns the aggregators placement policy. The
various implementations of the MPI-2 standard propose
a couple of aggregators mapping strategies for two-phase
I/O. For example, in MPICH [18] a strategy consists in
selecting the bridge node (i.e. the node directly linked to
the I/O node) as a first aggregator and the other aggregators
following a rank order. This strategy takes into account
neither the distance between the compute nodes and the
storage system nor the amount of data exchanged. Moreover,
the process mapping may severely impact the performance
by selecting aggregators on neighboring nodes inevitably
creating contention. Our strategy involves considering the
topology of the architecture and the data access pattern in
an objective function in order to determine a near-optimal
aggregator placement optimizing data movements. For the
rest of this paper, we call “partition” a subset of nodes
hosting processes sharing a contiguous piece of data in file.
The number of aggregators defines the partition size, each
partition electing one aggregator among the processes.

Given, for each partition:
• VC : The set of compute nodes performing aggregation

in the partition;
• A ∈ VC : An aggregator chosen among compute nodes;
• IO: The storage system (I/O node) of the partition;
• ω(u, v): The amount of data exchanged between nodes

u and v;
• d(u, v): The number of hops between nodes u and v;
• l: The interconnect latency;
• Bi→j : The bandwidth from node i to node j.
Figure 2 shows the two costs computed in our objective

function for one partition. These two costs model the two
phases of the algorithm.

The cost C1 corresponds to the cost of aggregating
data into aggregator buffers. Every process involved in the
partition computes this cost in a distributed way as if it was
chosen as the aggregator. From a candidate point of view, for
each rank producing data the aggregation cost is computed
and the maximum is kept as all the others will be bounded
by this one. Formally, each process A computes the cost C1:
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IO : I/O node
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Figure 2: Objective function minimizing the communication
costs to and from an aggregator.

C1 = max

(
l × d(i, A) +

ω(i, A)

Bi→A

)
, i ∈ VC , i 6= A

For the next step, the candidate compute the cost of
sending the sum of aggregating data to the storage system
(I/O node). For each process A, we define the cost C2 as:

C2 = l × d(A, IO) +
ω(A, IO)

|VC | ×BA→IO

The objective function modelling our topology-aware ag-
gregator placement strategy offers to minimize the sum of
the costs C1 and C2. Formally, each process in a partition
computes this objective function:

TopoAware(A) = min (C1 + C2)

A call to MPI_Allreduce with the MPI_MINLOC
enables our algorithm to choose as an aggregator the process
with the minimal cost. Hence, for each partition an aggre-
gator is elected.

C. Results

We evaluated our topology-aware I/O library on HACC-
IO, the I/O kernel of HACC [19], a large-scale cosmological
application simulating the mass evolution of the universe
with particle-mesh technique.

The experiments were carried out on Mira, a 10
PetaFLOPS IBM BG/Q supercomputer at Argonne National
Laboratory (see Figure 3) with 48K nodes interconnected
with a 5D-torus high-speed network providing a theoretical
bandwidth of 1.8 GBps per link. Each node hosts 16 hyper-
threaded PowerPC A2 cores (1600 MHz) and 16 GB of main
memory. Following the BG/Q architecture rules, Mira splits
the nodes into Psets. A Pset is a subset of 128 nodes sharing
the same I/O node. Two compute nodes of a Pset offer a 1.8
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Figure 3: IBM BG/Q Architecture

GBps link to the I/O node. These nodes are called the bridge
nodes. GPFS manages 27 PB of storage.

In this paper, we will present our results with HACC-IO
in terms of write I/O bandwidth on 1024 nodes on Mira
with a single shared file and one file per Pset. Let’s note
that on 1024 nodes, the peak I/O bandwidth is estimated to
22.4 GBps (theoretical: 28.8 GBps). For these experiments,
we set the number of aggregators to 128, in other words 8
aggregators per Pset similar to the default MPICH config-
uration on BG/Q. We also allocate 16 MB per aggregator’s
buffer. Our topology-aware strategy is compared to ROMIO,
the MPI I/O implementation in use on Mira and to POSIX
I/O. Two data layouts are shown, highlighting their impact
on performance.

Figure 4 shows the results on 1024 Mira-nodes, with 16
ranks per node and a single shared file as output. By varying
the number of particles managed by each rank, we increase
the data size on the x-axis. The first remark we can make is
that the best performance we can achieve does not exceed
5 GBps, being approximately 20% of the peak performance
on the best case. Nonetheless, our approach still outperforms
the standard strategies on both data layouts. In particular,
with the smallest number of particles tested (5K particles or
190KB per process) and an array of structures data layout,
our implementation performs 15 times faster than MPI I/O.

When increasing the number of processes, reading or
writing data in a single shared file proves to be extremely
limited to achieve good I/O performance. A solution consists
in partitioning the data in several files (subfiling). Figure 5
presents our experiments in the same configuration as the
previous ones except that one file is created per Pset.
We can notice that subfiling is an efficient technique to
improve I/O performance since up to 90% of the peak
I/O bandwidth is achieved by our topology-aware strategy.
Again, we outperform the default implementations even on
large messages.
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D. Reproducibility issues

While implementing this optimized version of the two-
phase I/O scheme and during our experiments, we have
noticed a couple of reproducibility issues. The first one is
related to the supercomputer architecture. A minimal base of
knowledge is required to interpret the results and to reduce

I/O interference. The second issue concerns the software
stack’s stability. From one version of the runtime to another,
the performance can be heavily impacted. Finally, the choice
of input parameters may cause a large variation in results as
can be seen in Figure 5. In the next section of the paper, we
will give details about these three issues and propose some
guidelines to restrict as much as possible their impact on
reproducibility and performance portability.

IV. REPRODUCIBILITY

A. Topology-awareness and I/O interference

When carrying out experiments with our I/O library, we
observed a certain variability in the I/O bandwidth measured.
This instability was due to I/O interference with other jobs.
On Mira, a set of I/O nodes is isolated only as part of a
512-nodes allocation.

To emphasize this behavior, we ran controlled benchmark
tests using one Pset (128 nodes compute nodes, two bridge
nodes and one I/O node). Our tests were run to highlight
the impact of I/O interference. In one case, we ran a
single I/O intensive HACC-IO job on 64 of the 128 nodes,
while leaving the other 64 nodes idle. This case eliminated
interference on the bridge and I/O nodes. In the other case,
we ran the same I/O intense job on 64 of the 128 nodes,
while simultaneously running jobs of varying I/O intensity
on the other 64 nodes. Node allocation was distributed such
that each 64 node job used 32 nodes per bridge node.
This configuration corresponded to the default distribution
on BG/Q. Figure 6 depicts a 5D Torus flattened on 2
dimensions and the aforementioned jobs partitioning.
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Figure 6: Job partitioning on a Pset on Mira to demonstrate
the impact of I/O interference on performance.

Table II shows the mean I/O bandwidth achieved with
HACC-IO with and without interference. A single I/O
intensive HACC-IO job running on 64 nodes sharing two
bridge nodes can reach more than 60% of the peak I/O
bandwidth. However, the performance is decreased by 13%
when a concurrent job is running on the same Pset. We can
also notice a rise in variability (standard deviation) of 37.5%.



This result demonstrates the need to have a good knowledge
of the underlying topology. On BG/Q for instance, we have
learnt that the minimal unit to consider for a node allocation
is a block of four Psets (512 nodes) to reduce as much as
possible the impact of I/O interference and ensure a good
reproducibility.

Table II: Mean I/O bandwidth achieved with HACC-IO (2
MB per rank) through our I/O library with and without
interference. Concurrent jobs have variable I/O intensity (0.2
MB to 4 MB per rank).

HACC-IO Other
Average Std dev Average Std dev

no-interference 2.20 GBps 0.10 GBps N/A N/A
interference 1.92 GBps 0.16 GBps 1.15 GBps 0.35 GBps

B. Software Stack

As discussed in Section III-B, our strategy creates parti-
tions based on contiguous chunks of data in file and elects an
aggregator per partition. The chunk size is always a multiple
of the file system block size1. This constraint mainly avoids
lock contention in the file system. However, it also implies
that a process may read or write data from two partitions
given that its data can belong to two different chunks.
Because of that, for each file as output, the aggregators are
chosen sequentially. This algorithm step is performed with
a call to MPI_Comm_split to create a sub-communicator
including the processes involved in a partition. In the case of
subfiling per Pset, the sets of aggregators per file (usually
8) are chosen in parallel. On the other hand, in the case
of a single shared file, this step becomes expensive as all
the aggregators (usually 64 for 1024 nodes) are elected
sequentially. In the big picture, the aggregators selection is
usually done once during the execution and even a number of
seconds is insignificant compared to a large-scale simulation
execution time and its I/O phases. However, we still would
like to limit the computation of aggregator placement to a
reasonable time. This is primarily to deal with upcoming
supercomputing architectures. That force us to consider
several tiers of storage hierarchy with various performance
during the same application lifetime. Thus, we may have to
compute a new placement at various stages of the execution
in relation to one or the other storage system.

We profiled our implementation and identified the per-
formance of MPI_Comm_split as a key bottleneck. On
BG/Q, the default MPI implementation is based on MPI-2.
We decided to evaluate the performance of an alternate MPI
implementation based on the MPI-3 standard on the BG/Q.
We noticed significant performance differences. To better
understand this, we developed a benchmark reproducing

1The block size of a file system is the smallest indivisible piece of
memory involved when performing I/O.
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the behavior of our library for splitting communicators.
This benchmark applies successive MPI_Comm_split
on a 16K ranks communicator. We also developed a
MPI_Comm_split benchmark based on MPI_Groups
wherein we add processes to a group in order to achieve
the same functionality of splitting a communicator. We
compared these two techniques using MPICH-2 1.5 and
MPICH 3.2 on Mira. The results are presented in Figure 7.
These results show a factor of two between the two MPI
implementations regardless of the splitting technique. They
bring out the effect of the MPI runtime in the performance.
In general, the reproducibility of our experiments can be
heavily affected by any change in the software stack, and,
in this case the MPI implementation.

C. Problem Size

The choice of input parameters when carrying out ex-
periments is critical. It’s often a trade-off to find between
what one wants to highlight and the scientific relevance of
the experiments. On HACC-IO, the main input parameter
is the number of particles managed by rank. Each particle
is composed of 9 variables bringing the size of a particle
to 38 bytes. To evaluate our approach, we ran our tests
while varying the number of particles per rank from 5,000 to
100,000 (190 KB to 3.7 MB). This range of particles is quite
common in HACC, validating the scientific accuracy of the
experiments. However, particularly in the subfiling case (see
Figure 5 in Section III-C), we noticed a significant variation
of the I/O bandwidth achieved according to the data size
(number of particles). Figure 8 depicts the absolute standard



deviation calculated from 10 runs of this experiment. The
percentage of the mean execution time represented by this
standard deviation is also plotted.
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In the smaller case with 5,000 particles per process, the
standard deviation is extremely high, reaching a coefficient
of variation2 of almost 30%. Apart from a peak observed
with 50,000 particles (1.8 MB), the coefficient of variation
tends to strongly decrease with the data size. In the larger
case, this value is close to 5% showing a low dispersion
of the experimental results. This analysis points out the
effect of the problem size, and more generally of input
parameters in performance variability. It leads to try out
a large range of parameters to get close to a compromise
between reproducibility and scientific precision.

V. CONCLUSION

In this paper, we presented our experiences with the
development of a topology-aware I/O library and discussed
some of the challenges we addressed to ensure reproducible
I/O performance. Particularly, we have demonstrated the
necessity to have a good understanding of the system topol-
ogy to reduce I/O interference. We discussed the impact
of a change in the software stack on the time taken by
a placement algorithm. Finally, we have shown that the
variability of the I/O bandwidth on a large-scale system
can be correlated with the choice of the problem size and,
in a more general way the input parameters. With the

2The coefficient of variation is the ratio of the standard deviation and
the mean expressing the data dispersion.

reproducibility results in mind, we provided useful lessons
while implementing and evaluating our model: 1) the need
to carefully select allocation size isolating I/O nodes, 2)
the necessity to stabilise the I/O software stack and 3) the
significance of input data size for reducing variability.

A next step for us is to ensure the performance porta-
bility on other platforms. This promises to be challenging
considering tremendous diversity of the different layers of
the I/O stack. An imminent availability of our work under
a free licence is also a requirement to ensure a new level of
reproducibility.
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