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Abstract—High-performance distributed memory applications 
often load or receive data in a format that differs from what 
the application uses. One such difference arises from how the 
application distributes data for parallel processing. Data must 
be redistributed from how it was laid out by the producer to 
how the application needs the data to be laid out amongst its 
processes. In this paper, we present a large-scale distributed 
memory library, provided to developers in an easily integrated 
API, for automating data redistribution in MPI enabled 
applications. We then present the results of two scientific 
computing use cases to evaluate our library. The first use case 
highlights how dynamic data redistribution can greatly reduce 
load time when reading three-dimensional medical imaging 
data from disk. The second use case highlights how dynamic 
data redistribution can facilitate in-transit analysis of 
computational fluid dynamics, which results in smaller data 
output size and faster time-to-discovery. 

Keywords-data redistribution; distributed memory; MPI; 
scalable algorithms; scientific applications 

I.  INTRODUCTION 
Simulations and analysis run on high-performance 

computing (HPC) resources are driving large-scale science 
and engineering. Applications running on these massively 
parallel, distributed memory systems must divide data and 
computation amongst individual compute processes. Current 
trends, elucidated in the 2014 DOE High Performance 
Computing Operational Review (HPCOR), show that the 
cost of data relative to computation is growing [5]. This 
means that HPC applications must dedicate more time and 
resources to loading and saving data, which results in less 
utilization for scientific computation. Findings from HPCOR 
also state that science use cases produce and use a wide 
variety of data with different access patterns. Efficient data 
transformations can help address these issues by load-
balancing data accesses and supporting a variety of access 
patterns.  

Existing research on data transformation to enable 
compatibility between applications primarily surrounds how 
data is organized within a process (e.g. storing multivariate 
data in a planar configuration or interleaved configuration) 
[15]. When it comes to handling the distribution of data 
between processes, most solutions are application specific 
and not easily integrated into other software packages [1,19]. 
We identified the flexible redistribution of data between 
processes as an open research area. Therefore, we aimed to 
automate the redistribution of dynamic data with minimal 

instructions in order to reduce the burden placed on 
application developers. 

In this paper, we address handling layout differences 
between data producers and data consumers, as well as 
provide methods for load-balanced parallel data management 
routines. We have developed the Dynamic Data 
Redistribution (DDR) library, which can be seamlessly 
integrated into existing scientific and engineering codebases 
with three simple function calls. The DDR library calculates 
what data must be exchanged with each processes and 
abstracts MPI routines to enable HPC applications to 
redistribute data between processes. Application developers 
simply must specify what data each process currently owns 
and the data each process desires in respect to the overall 
data domain. 

DDR was designed to achieve two majors goals: 1) 
reduce overall application disk read and write time by 
facilitating load-balanced I/O, and 2) transform inter-process 
data layout on-the-fly to enable various data access patterns. 
By accomplishing these goals, DDR serves as an efficient 
technique for accessing data that is stored in a fashion that is 
not directly compatible with the application wishing to use it. 

We have evaluated DDR with two authentic scientific 
use cases. First, we highlight how DDR can facilitate load-
balanced parallel I/O when reading a stack of TIFF images to 
perform parallel visualization of three-dimensional medical 
imaging data. In this case, DDR enables the visualization 
application to read the image files from disk in a load-
balanced fashion. After the images are read in, individual 
pixels are redistributed so that each process can properly 
access the data it needs to create the final visualization. 
Results from this use case show that DDR can lead to nearly 
a 25X I/O speed-up compared to the traditional parallel I/O 
technique previously used. 

For the second use case, we highlight how DDR can 
enable real-time analysis of a computational fluid dynamics 
(CFD) simulation. In this case, a visualization application 
can use DDR to enable on-the-fly transformation of in-transit 
data received from the CFD simulation. This transformation 
allows data to be redistributed from how it was laid out in the 
simulation to how it needs to be laid out in the visualization 
application. Rendering images while the simulation is 
running allows the scientists to monitor its progress and gain 
situational awareness, which can lead to a faster time-to-
discovery. Additionally, saving rendered images to disk, 
rather than the raw simulation data, results in significantly 
smaller data output size as well as faster I/O [12]. 
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II. RELATED WORK 
Parallel distributed memory applications are traditionally 

written using MPI. However, many common design patterns 
are not sufficiently abstracted, causing unnecessary 
complexities for application developers. Kaushik et al. [8] 
talk extensively about the issue of accessing distributed data. 
They write: “Different phases of a program vary in their 
access patterns to a shared array and a different data 
distribution of the array is often best suited for each phase… 
Scientific libraries are tuned to provide peak performance for 
a fixed set of distributions for the input arrays. These 
distributions may not conform with the distributions of the 
actual parameters, leading to performance degradation.” Our 
DDR library complements the current field of work that 
attempts to address this problem. 

A. Data Transformations 
Perry and Swany [13] developed a method called data 

type fission that segregates transmitted fields from non-
transmitted fields for sending and receiving data between 
processes. This process enables MPI applications to 
efficiently transmit certain fields of a native object while 
omitting others. The use of data type fission eliminates extra 
data copies and leads to a significant improvement in 
performance in communication heavy applications. While 
this type of data transformation can lead to more efficient 
communication, it does not abstract the redistribution of data. 
This, in turn, leaves a heavy burden on application 
developers when data redistribution is necessary. 

Kjolstad et al. [9] have developed an algorithm to 
automate the creation of custom MPI data types. Their work 
abstracts the transformation of non-continuous data for 
efficient retrieval. Performing these transformations 
manually in real-world applications is complex, time-
consuming, and error-prone. Therefore, their algorithm aims 
to improve programmer productivity and reliability. Our 
work has similar goals, but for inter-process data 
transmission in addition to staging the data for efficient 
retrieval. 

Sharma et al. [14] investigated array interleaving, a data 
transformation technique that combines elements from 
multiple arrays in continuous memory. This transformation 
can reduce the number of memory accesses and lead to 
greater computational efficiency due to spatial locality of 
data. Experimental results also show a significant decrease in 
memory energy when using array interleaving. While our 
research looks at a different aspect of data transformations, 
this work could be utilized along side of DDR to efficiently 
stage data for redistribution. 

B. Data Redistribution 
DIY2 [9] provides a data and computation abstraction for 

parallel workflows. The main use for DIY2 is to enable the 
same program to execute on various platforms, from HPC 
distributed memory environments to a single multi-core 
workstation. One feature of DIY2 is to abstract the 
communication patterns for exchanging data between 
processes when running on a distributed memory system. 
However, this abstraction is intended for iterative processes 

requiring information from local neighbors or global 
reductions. In contrast, our work is designed to facilitate the 
staging of data onto the proper processes for computation. 

Esnard et al. [5] present a steering framework for parallel 
simulations. They enable the coupling of a visualization 
system with a running HPC simulation, allowing users to 
view and modify the simulation as it runs. Since data on the 
HPC simulation likely has a different layout than is needed 
in the parallel visualization, data must be reorganized. In 
their work, this redistribution of data occurs at the socket 
level when transmitting data over the network between 
simulation processes and visualization processes. Our work 
was designed to accomplish a similar redistribution of data, 
but without relying on external network communication. 

C. Scientific Applications 
Our research on automating dynamic data redistribution 

can lead to efficiencies in a variety of common large-scale 
scientific and engineering workflows. One common 
technique is visualizing 3D data using volume rendering 
[7,18]. In order to handle ultra high-resolution data sets, 
research has been conducted on performing distributed 
volume rendering using many compute nodes with many 
GPUs [4,14,16]. However, loading large 3D data sets into 
common distributed rendering packages can be time 
consuming. One such software is ParaView [2], which 
requires preprocessing data into a custom format in order to 
leverage parallel data distribution. Our research could be 
integrated into such packages to enable on-the-fly conversion 
from data formats that are laid out in an otherwise 
incompatible fashion. 

Another scientific workflow that has increased demand is 
in-situ analysis of running simulation. One way to perform 
in-situ analysis is to have two separate resources, one 
dedicated to the simulation and the other dedicated to the 
analysis. In this scenario data must be sent in-transit from 
one distributed memory application to another. ADIOS [10] 
and GLEAN [17] are two such frameworks that enable this 
type of data movement. However, there is still potential for 
data needing to be redistributed once it arrives on the 
analysis resource due to differences in the number of 
processes in each application or how the applications expect 
data to be laid out. Therefore integration of DDR into 
analysis applications receiving simulation data in-transit can 
facilitate the efficient processing of real-time data. 

III. METHODS 
This section covers the library we developed for 

automated dynamic data redistribution in distributed memory 
applications. We have broken the process down into three 
major components: initialization and description of the data, 
setting up the mapping of data between processes, and the 
actual transmission of data between processes. Each of these 
three components have been wrapped into a single public 
function in our library. DDR_NewDataDescriptor is the 
public function that creates an object to describe the type of 
data being reorganized. DDR_SetupDataMapping is the 
public function that informs our library what data each 
process in the application owns and what data each process 
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needs. DDR_ReorganizeData is the public function that 
performs MPI calls to exchange data between processes. By 
limiting the outward facing code, we have reduced the 
burden on application developers to integrate our library into 
existing projects. 

Throughout this section we reference the following 
example, E1, to help illustrate the concepts of dynamic data 
movement enabled by DDR. E1 is a distributed memory 
application with four processes operating on a two-
dimensional grid with an overall domain of 8x8. Each 
process owns two separate rows, but needs the data located 
in one of the quadrants of the overall domain. Figure 1 
illustrates the setup and data movement needs for E1. In 
addition to providing a visual overview of DDR, we outline 
how the library can be easily integrated into an application. 
Algorithm 1 provides pseudocode for E1 using the three 
public function calls in the DDR library. In the algorithm, 
dataown represents the two 8x1 chunks of data owned by each 
process prior to data redistribution, and dataneed represents 
the quadrant of data needed by each process after data 
redistribution. 

Algorithm 1 Sample use of the DDR library. 
Input: dataown  
Output: dataneed 
1: desc = DDR_NewDataDescriptor(nProcesses, 

DATA_TYPE_2D, MPI_FLOAT, sizeof(float)) 
2: chunksown = 2 
3: dimsown = {[8, 1], [8, 1]} 
4: offsetsown = {[0, rank], [0, rank+4]} 
5: right = rank % 2  
6: bottom = rank / 2 
7: dimsneed = [4, 4] 
8: offsetsneed = [4*right, 4*bottom] 
9: DDR_SetupDataMapping(rank, nProcesses, chunksown, 

dimsown, offsetsown, dimsneed, offsetsneed, desc) 
10: DDR_ReorganizeData(nProcesses, dataown, dataneed, desc) 

A. Data Description 
The first step to enable DDR is to create a description of 

the type of data that needs to be redistributed. DDR currently 
supports 1D, 2D, or 3D arrays stored in continuous memory 
with each element having a fixed size. An application creates 

a DDR descriptor with the DDR_NewDataDescriptor 
function. This function has four parameters: the number of 
processes in the MPI application; whether the data is 
organized in a 1D, 2D, or 3D array; the data type of the 
elements in the array; and the byte size of the elements in the 
array. The function returns a pointer to an object that stores 
this information. 

B. Data Mapping 
The second step for DDR is to set up the mapping 

between processes for sending and receiving data. Each 
process in the distributed memory application may own 
several chunks of data from the overall domain. In order to 
properly process the data, we assume that each process will 
require a single continuous subsection of data after data 
redistribution. Therefore, DDR enables each process to send 
data to other processes from many chunks, while receiving 
data from other processes into one chunk. 

An application sets up the data mapping using the 
DDR_SetupDataMapping function. This function has eight 
parameters: the rank number of the process calling the 
function, the number of processes in the MPI application, the 
number of chunks the process calling the function owns, an 
array specifying the dimensions of each owned chunk, an 
array specifying the offsets of each owned chunk into the 
overall domain, the dimensions of the chunk the process 
calling the function needs after data redistribution, the offset 
of the needed chunk into the overall domain, and the DDR 
descriptor object. Table I enumerates E1’s parameter values 
for each process using the pseudocode from Algorithm 1. 

Dimensions and offsets for sending and receiving data 
chunks have a number of elements corresponding to the 
problem type - [i] for 1D, [i,j] for 2D, and [i,j,k] for 3D. 
Therefore the number of total elements in the sending 
dimensions and offsets parameters must be equal to the 
number of chunks owned prior to redistribution multiplied 
by the number of dimensions in the problem type. The 
number of elements in the receiving dimensions and offsets 
parameters must be equal to the number of dimensions in the 
problem type. 

 

Figure 1. 2D data redistribution in a distributed memory application with four processes. Panel A – data layout before and after redistribution. The left grid 
shows each process in the application owning two separate 8x1 chunks of data in the overall domain prior to data redistribution. The right grid shows each 
process needing one continuous 4x4 chunk after redistribution in order to properly process the data. Panel B – data mapping for rank 0. This grid shows the 

chunks of data owned by rank 0 that need to be sent to other ranks as well as the chunks of data rank 0 needs to receive from other ranks 
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 P1 P2 P3 P4 P5 P6 P7 P8 
Rank 0 0 4 2 {[8,1],[8,1]} {[0,0],[0,4]} [4,4] [0,0] desc 
Rank 1 1 4 2 {[8,1],[8,1]} {[0,1],[0,5]} [4,4] [4,0] desc 
Rank 2 2 4 2 {[8,1],[8,1]} {[0,2],[0,6]} [4,4] [0,4] desc 
Rank 3 3 4 2 {[8,1],[8,1]} {[0,3],[0,7]} [4,4] [4,4] desc 

 
The chunks of data sent from each process should be 

mutually exclusive and complete. This means that no two 
processes should own the same data prior to redistribution 
and that collectively the entire data domain should be owned 
by some process. On the receiving end, however, data does 
not need to be mutually exclusive or complete. This means 
that multiple processes can receive overlapping data and that 
there can be areas of the overall domain not received by any 
process. 

Internally, the DDR_SetupDataMapping function 
creates a series of send and receive objects to be used with 
MPI commands for data redistribution. Based on the send 
and receive dimensions and offsets provided by each 
process, a geometric overlap is computed to detect which 
subsections of the data chunks should be sent to and received 
from other processes. Even in applications where the data is 
dynamic, this set up process is only required once as long as 
the layout of data remains consistent.

C. Data Redistribution 
The third and final step for redistributing data using DDR 

is to actually exchange the data between processes in the 
distributed memory application. A developer can trigger this 
with a call to DDR_ReorganizeData, which takes four 
parameters: the number of processes in the MPI application, 
a buffer that has the data owned by the process calling the 
function, a buffer where the needed data will be stored into, 
and the DDR descriptor object.

Internally, the DDR_ReorganizeData function will

make calls to MPI_Alltoallw in order to exchange data 
between processes. The number of MPI_Alltoallw calls is 
equivalent to the maximum number of chunks that any one 
process owns. MPI_Alltoallw is used (rather than 
MPI_Alltoallv) since custom subarray types are needed to 
describe multidimensional subsets of data. When dealing 
with dynamic data, DDR_ReorganizeData can be called 
each time processes own new data without needing to 
initialize the library or set up the data mapping again. The 
DDR library is available with permission from Argonne at 
https://xgitlab.cels.anl.gov/fl/ddr/. 

IV. USE CASES 
Automating the redistribution of dynamic data in 

distributed memory applications can have significant impact 
on a number of authentic large-scale scientific and 
engineering applications. This section highlights two use 
cases that utilize DDR to improve efficiency and enable real-
time analysis with reduced storage needs. The first use case 
surrounds efficiently loading ultra high-resolution 3D 
medical images in parallel. The second use case surrounds 
enabling real-time parallel visualization of HPC simulations 
via in-transit streaming. 

A. Parallel Visualization of 3D Medical Images 
The medical images generated from Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), and Positron 
Emission Tomography (PET) are able to generate ultra high-
resolution three-dimensional data sets. These data sets are 
typically generated by capturing a series of slices through the 
medium being imaged. The slices are then saved in a 
standard image format, such as TIFF. In order to visualize 
the three-dimensional volume, the series of 2D images can 
be stacked on top of each other and rendered in a process 
known as direct volume rendering (DVR) [7,18]. Figure 2 
depicts a 3D image of a primate tooth, showing both 
individual 2D images stacked next to each other, and 
visualized using DVR. 

Unfortunately, GPUs have limited resources and 
 

Figure 2. Visualization of a 3D TIFF stack representing a primate tooth. Left – individual 2D images stacked next to each other (only a small subset shown 
for clarity). Middle – volume visualization using DVR of the 3D data set. Right – colormap used to render the primate tooth image data. 

TABLE I. DDR_SETUPDATAMAPPING PARAMETER VALUES FOR E1. 
PARAMETERS ARE ABBREVIATED – P1: RANK NUMBER, P2: NUMBER OF 

PROCESSES, P3: NUMBER OF CHUNKS TO SEND, P4: ARRAY OF SEND CHUNK 
DIMENSIONS, P5: ARRAY OF SEND CHUNK OFFSETS, P6: RECEIVE CHUNK 

DIMENSIONS, P7: RECEIVE CHUNK OFFSETS, P8: DDR DESCRIPTOR. 
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therefore cannot render data sets that are too large to fit in 
their graphics memory (e.g. a GPU with 4GB of usable 
graphics memory could handle a maximum volume of 
2048x2048x1024 1-byte ints or 1024x1024x1024 4-byte 
floats). When the data set is too large for a single GPU to 
render, parallel visualization techniques must be employed to 
use multiple GPUs on multiple machines. 

In order to perform efficient distributed memory DVR, 
the entire volume is broken into equally sized boxes that are 
as close to cubes as possible. This leads to each process only 
needing data from a subset of images in the entire series. It 
also leads to each process only needing a subset of pixels 
from each image it needs data from. Unfortunately, common 
2D image formats such as TIFF require a program to decode 
and extract the entire image from file, even if the application 
only needs the values of a few pixels. Reading and decoding 
entire images on each process leads to many processes 
loading the same image. It also leads to each process 
throwing away much of the data it spends effort on to 
extract. 

To address the time-consuming and unnecessary 
overheads, we have integrated our DDR library into the 
loading of a series of TIFF images. The total number of 
images in the TIFF series can be equally divided amongst the 
processes regardless of what chunks of data each process 
eventually needs. Our DDR library is then used to 
automatically redistribute pixel data from the processes that 
read and decoded each image to the processes that need 
partial images to properly perform distributed memory DVR. 
Using DDR results in each TIFF image only being read by 
one process and avoids reading and decoding pixel data that 
would just be thrown away. 

Our collaborators have gathered ultra high-resolution 
three-dimensional CT images on Argonne National 
Laboratory’s Advanced Photon Source (APS). Two such 
data sets are a 2028x2048x2048 volume of a primate tooth 
stored as a series of 32-bit grayscale TIFF images, and a 
4096x2048x4096 volume of a mouse brain stored as a series 
of 8-bit grayscale TIFF images.  

In order to perform benchmark tests to evaluate the 
performance of DDR, we generated an artificial TIFF data 
that had the largest resolution and bit-depth of our authentic 
data sets. Therefore our artificial data set consisted of 4096 
TIFF images, each with a resolution of 4096x2048 and 32-
bit grayscale color. This resulted in a volume with a total 
data size of 128GB. We have utilized Argonne National 
Laboratory’s visualization cluster, Cooley, to load the 
artificial TIFF image series for parallel DVR. Cooley has 
126 nodes, each node has two GPUs, and each GPU has 
12GB of graphics memory. Therefore, a minimum of 11 
GPUs (6 nodes) would be required to load the entire data set. 
Cooley nodes are interconnected with a FDR Infiniband 
CLOS network. Each node has a single 56 Gbps link 
available for MPI communications. 

To evaluate load time, we tested three different cases -
without DDR, using DDR where each process reads and 
decodes images assigned from the series round-robin, and 
using DDR where each process reads and decodes images 
assigned from the series in consecutive chunks. The 

difference between the latter two cases is that the round-
robin assignment requires each image to be a separate chunk 
to redistribute with DDR, whereas consecutive images can 
be grouped together into a single chunk to redistribute with 
DDR. We ran these tests at four different scales - always 
splitting the volume into an equal number of chunks in each 
dimension – 33 (27) processes, 43 (64) processes, 53 (125) 
processes, and 63 (216) processes. Each test was repeated 10 
times. 

Results, enumerated in Table II, show that using DDR 
can significantly reduce the load time of a stack of TIFF 
images. This is due to the reduction in overall image reads 
needed by the application. These results mean that the 
overhead associated with transmitting data between 
processes is more than offset by the file reading efficiencies 
gained. Using DDR with one consecutive chunk on 63 (216) 
processes led to the maximum improvement in performance 
– an average of 6.6 seconds compared to an average of 165.3 
seconds when not using DDR (24.9X speed up). 

Since we ran tests at various scales, we were able to 
show that DDR achieves strong scaling. Figure 3 shows this 
strong scaling of loading TIFF images in parallel. The two 

Number of 
Processes 

No DDR DDR  
(Round-Robin) 

DDR 
(Consecutive) 

33 (27) 283.0 ± 1.7 sec 39.3 ± 0.2 sec 49.2 ± 0.2 sec 
43 (64) 204.6 ± 1.2 sec 18.9 ± 0.2 sec 18.9 ± 0.1 sec
53 (125) 188.2 ± 1.2 sec 11.1 ± 0.1 sec 10.4 ± 0.1 sec 
63 (216) 165.3 ± 5.9 sec   9.7 ± 0.4 sec   6.6 ± 0.0 sec 

Figure 3. Strong scaling results for parallel TIFF loading. Using DDR 
with many small chunks resulting from a round-robin distribution of file 

reading and using DDR with one large chunk resulting from reading 
consecutive files both exhibit strong scaling. However, DDR with one large 

chunk results in maximum performance at larger scales. 

TABLE II. TIFF LOAD TIME RESULTS. 
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data redistribution techniques we implemented (consecutive 
and round-robin) are plotted along with a baseline case that 
does not use DDR. Since we increased the number of 
processes in a cubic fashion, the time is depicted with a log3
scale.  

Beyond the comparison with the baseline case, we can 
notice performance differences between the two techniques 
for data redistribution. At small scale, the round-robin 
method outperforms the consecutive method by 20%, while 
this trend reverses at larger scales with the consecutive 
approach 32% faster on 216 processes. This behavior can be 
explained by the trade-off between network contention and 
communication scheduling of each technique, as shown in 
Table III. This table presents, for each number of processes 
tested, the number of rounds (calls to MPI_Alltoallw) to 
perform and the data size sent and received per process per 
round. Using the consecutive approach, the data is
contiguous in memory requiring only one round with a large 
amount of data per process (up to 4.3 GB). This creates 
network contention on the single 56 Gbps link available per 
node. When distributing images in a round-robin way, the 
number of calls to MPI_Alltoallw is equal to the total 
number of images divided by the number of processes. 
However, despite the overhead of these consecutive 
collective operations, the data size per process per round 
remains constant and allow for full utilization of the network 
bandwidth capacity. A strong scaling of our experiments 
highly reduces the data size per process in the consecutive 
method, optimizing at the same time the network bandwidth 
usage. On the other hand, the round-robin method still pays 
the price of the overhead of multiple calls of 
MPI_Alltoallw with a larger number of processes. 

B. In-Transit Streaming 
Performing data analysis on intermediate results of a 

running high-performance computing application has several 
advantages. It produces an I/O cost savings by performing 
analysis without the need to write to or read from disk. This 
in turn enables a higher sampling rate for analysis, which can 
elucidate complex behaviors occurring at fine temporal 
resolution. Additionally, specialized hardware such as high-
bandwidth networks and GPUs can be leveraged for analysis 
at the same time as the CPUs are computing simulation 
results. Our second DDR use case focuses on in-transit 
analysis, where data is streamed from a distributed memory 
computational resource performing a simulation to a separate 
distributed memory resource responsible for performing 
analysis. Data is sent from M simulation ranks to N analysis 
ranks. After receiving intermediate data, the analysis 
resource leverages our library to redistribute data from how 

it was laid out in the simulation application to how it needs 
to be laid out for the application performing analysis. 

We have used a simple Lattice Boltzmann method 
(LBM) for computing fluid flows in a two-dimensional 
space [3]. The density and velocity of the fluid is broken 
into a regular grid of floating point values. In each iteration 
of the simulation, every cell updates its value by simulating 
particles streaming and collisions. Certain cells, including 
the edges, are kept at fixed values. For our evaluation tests, 
we place a barrier inside the domain that forces the fluid to 
flow around it, creating more turbulent flow patterns. 

The simulation application splits the data into slices to 
distribute between ranks. This was done so as to minimize 
the number of ranks each rank needed to exchange data with 
during each iteration of the simulation. By using slices that 
cover the entire width of the domain, each rank only needs to 
communicate with two other ranks at most, the neighbors 
with data directly above and below. 

For analysis, we created a simple visualization 
application, which would take the 2D array of floating point 
values and apply a colormap in order to create an image. In 
this use case, rotational velocity was chosen as the variable 
of interest. The visualization enables users to quickly 
determine flow patterns throughout the domain. We ran our 
tests on Argonne National Laboratory’s visualization cluster, 
Cooley, with 128 processes for the LBM simulation and 32 
processes for the visualization application. While 32 is a 
factor of 128, resulting in an equal number of simulation 
ranks streaming data to each analysis rank, in-transit 
streaming can be achieved without uniform mapping. Figure 
4 depicts the M-to-N parallel data streaming for the LBM 
fluid dynamics example. 

The visual analysis application expects data to be split 
into a grid that was as close to square as possible (given the 
total number of analysis ranks). Therefore, the data being 
received from the simulation was laid out in a different 
manner than the analysis application required. Using our 
DDR library ensures that data ends up in the proper location 
for analysis. Additionally, the redistribution of data must 
happen each time the analysis application receives new data 
from the simulation. However, the mapping of what piece of 
the overall domain each rank receives from the simulation 

Number of 
Processes 

DDR (Consecutive) DDR (Round-Robin) 
Rounds Data Size (MB) Rounds Data Size (MB) 

33 (27) 1 4315.12 152 30.81 
43 (64) 1 1920.00 64 31.50 
53 (125) 1 1006.63 33 31.74 
63 (216) 1 589.95 19 31.85 

Figure 4. Parallel data streaming of 2D LBM data. This illustration shows 
10 simulations ranks streaming data to 4 analysis ranks. The first two 

analysis ranks receive data from 3 simulation ranks, whereas the last two 
analysis ranks receive data from 2 simulation ranks. 

TABLE III. COMMUNICATION SCHEDULING OF MPI_ALLTOALLW 
ACCORDING TO THE DATA REDISTRIBUTION TECHNIQUE. 
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and what piece each rank needs to have in order to render the 
proper visualization remains constant. Figure 5 shows how 
data is automatically redistributed inside the analysis 
application by our library. 

Once data had been redistributed, the image could be 
rendered using a blue-white-red colormap. Rendered images 
were saved to disk rather than the raw data, which 
compressed the data resulting in smaller data output. Table 
IV shows results from running the 2D LBM fluid flow 
simulation at different grid sizes. The simulation ran for 
20000 iterations, outputting data every 100th iteration. Raw 
data was saved to disk directly from a 4-byte float array. 
Processed data was generated from the analysis application 
that visualizes the streamed raw data and saves to disk as a 
compressed JPEG image. The values in Table IV represent 
one variable of interest (vorticity) for both raw and processed 
data. However, many other variables (e.g. velocity, density, 
etc.) are required for computation and could also be streamed 
and rendered, achieving similar data compression. 

While using visualization to render an image results in a 
loss of data, it can yield a much higher output frequency 
without needing more storage capacity. This tradeoff could 
be beneficial in many cases, and may eventually become 
necessary as we approach exascale computing. Additionally, 
it is possible to do both raw data output and in-transit 
analysis at different frequencies. For example, in our LBM 
fluid flow use case, we could still output raw data every 100 
iterations, but additionally stream data every 10 iterations for 
visual analysis. This would increase temporal resolution 10-
fold, but only marginally increase data storage size. 
Scientists could use the additional temporal information to 
detect complex phenomena that were otherwise missed and 
direct future simulations. 

V. CONCLUSION 
We have presented research on automating the 

redistribution of dynamic data in distributed memory 
applications. Our main contributions are the development of 
a library that abstracts the necessary complexities for 
redistributing data inside a distributed memory application 
and highlighting the benefits of such a library through two 
authentic scientific use cases. Experimental results show that 
automated dynamic data redistribution can significantly 
reduce file load time when dealing with three-dimensional 
medical images and enable analysis applications to properly 
handle and process real-time data from a running simulation. 

To reduce the burden of integrating our library into 
existing simulations or analysis applications, we have 
consolidated our code into three public function calls. 
Application developers simply need to initialize the library, 
declare what data each process owns and what data each 
process wants, then ask the library to exchange data between 
processes. Since there is little coding required to integrate 
automated data redistribution into existing simulations and 
analysis tools, we foresee a wide range of large-scale 
scientific and engineering applications benefiting from 
integration of our DDR library. In addition to large-scale 
visualization, such as the use cases highlighted in this paper, 
DDR can be utilized in any distributed memory application 
when loading data that was produced with a different layout 
than the distribution needed for parallel processing. 

While highly useful, DDR does have certain limitations. 
First, it only supports 1D, 2D, or 3D arrays stored in 
continuous memory with each element having a fixed size. 
Second, the library requires additional memory usage to 
store both the data each process owns prior to redistribution 
and the data each process receives after redistribution. 
Therefore, certain applications that are already memory 
bound may need to utilize a greater number of nodes in an 
HPC system. 

For future work, we would like to extend the capabilities 
of the DDR library. First, we would like to optimize the MPI 
communication. Currently the redistribution is handled via 
MPI_Alltoallw calls, which may not be most efficient 
when data only needs to be sent and received from a subset 
of other processes. By looking at how an application sets up 
the data mapping, we could determine if data only needs to 
be redistributed to a few neighboring processes and use 
direct send and receive calls to improve efficiency. Finally, 
we would like to add support for more data patterns, so 
application developers could redistribute more complex 
structures organized with arbitrary data layout. 
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Grid Dimensions Raw Data 
Size 

Processed 
Data Size 

Data 
Reduction 

  3238 x 1295 3.2 GB 19.9 MB 99.38% 
  6476 x 2590 12.8 GB 61.0 MB 99.52% 
12952 x 5180 51.2 GB 217.8 MB 99.57% 
25904 x 10360 204.7 GB 830.9 MB 99.59% 

Figure 5. Data redistribution by the analysis application. The DDR library 
automatically reorganizes the data to fit the layout specified by the analysis 
application. For the 2D LBM fluid flow example, incoming slices of data 

were redistributed into nearly square rectangles. 

TABLE IV. DATA SIZE ON DISK WITH AND WITHOUT IN-TRANSIT 
STREAMING. DATA WAS SAVED 200 TIME STEPS DURING THE SIMULATION. 
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