
Optimizing Data Aggregation by Leveraging the Deep Memory
Hierarchy on Large-scale Systems

François Tessier
Argonne National Laboratory

Lemont, Illinois
ftessier@anl.gov

Paul Gressier
Argonne National Laboratory

Lemont, Illinois
pgressier@anl.gov

Venkatram Vishwanath
Argonne National Laboratory

Lemont, Illinois
venkat@anl.gov

ABSTRACT
Effective data aggregation is of paramount importance for data-
centric applications in order to improve data movement for I/O or
to facilitate complex workflows, such as in-situ analysis, as well
as coupling models and data for multi-physics. A key challenge
for data aggregation in current and upcoming architectures is the
heterogeneity of memory and storage systems (including DRAM,
MCDRAM, NVRAM or parallel file system). One has to take advan-
tage of this hierarchy and the characteristics of each tier to achieve
improved performance at scale. In this paper, we present a topol-
ogy and memory-aware data movement library performing data
aggregation on large-scale systems. We first detail our hardware
abstraction layer to accomplish code and performance portability
on various platforms. Next, we present a cost model taking into
account the system interconnect and the memory properties to
determine an appropriate location for aggregating data. We also
describe how we have implemented a data aggregation mechanism
through the read algorithm. Finally, we show how we can improve
data movement on a visualization cluster and a leadership-class
supercomputer up to 16K processes with a benchmark and two
typical I/O kernels. Particularly, we demonstrate how our approach
can decrease the I/O time of a classic workflow by 26%.

CCS CONCEPTS
• Information systems→ Hierarchical storage management;

KEYWORDS
Data movement, I/O, data aggregation, deep memory hierarchy,
placement

ACM Reference Format:
François Tessier, Paul Gressier, and Venkatram Vishwanath. 2018. Opti-
mizing Data Aggregation by Leveraging the Deep Memory Hierarchy on
Large-scale Systems. In ICS ’18: 2018 International Conference on Supercom-
puting, June 12–15, 2018, Beijing, China. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3205289.3205316

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205316

1 INTRODUCTION
Efficiently moving data on large-scale systems is decisive for im-
proved performance. Large-scale simulations express important
needs of reliability and accuracy in their results leading to a larger
amount of data to manage. We typically estimate that those ap-
plications can easily spend around 10% to 20% of the wall time in
I/O operations. In addition, the variety of the data structures that
need to be written or read complicates the work of the application
programmer to achieve good I/O performance. A particle-based
application, for instance, generally needs to write multiple variables
in multidimensional arrays evenly distributed among processing en-
tities while an AMR1 application has to manage different I/O sizes
according to the input parameters. The increasing popularity of
deep learning algorithms also brings new workloads requiring mas-
sive amount of input data. Last, more complex workflows such as
in-situ visualization and analysis intensify even more this complex-
ity. Thus, it is clear that data movement optimization is indubitably
a key challenge for the coming years.

From an hardware perspective, the gap has increased for years
between the amount of data to move and the memory or storage
capabilities, whether it be in terms of capacity or performance. To
overcome this problem, vendors have deployed intermediate tiers
of memory and storage that need to be taken into account to reduce
as much as possible the I/O bottleneck. However, these levels of
the memory hierarchy come with their own characteristics and
sometimes a dedicated software stack which make them difficult to
use efficiently.

Data aggregation is a widespread technique mitigating the data
movement bottleneck. It consists of aggregating data at different
places of the architecture in order to optimize costly data access op-
erations. In the context of collective I/O calls, for example, a phase of
data aggregation accumulates contiguous chunks of data inmemory
before writing it to the storage system. Another illustration could
be in-situ analysis workflows in which data aggregation provides
more input data to the analysis process at the same location.

In this paper, we present an extended version of TAPIOCA [14,
15], an I/O library performing topology-aware data aggregation at
scale. We propose to change the TAPIOCA perspective by tackling
new tiers of memory and storage on current and coming large-scale
systems. Thanks to an abstraction layer of the network interconnect
and the deep memory hierarchy, this library can now perform data
aggregation on any kind of memory or storage system and is seam-
lessly portable on various HPC systems. Thus, we target collective
I/O operations as well as more complex workflows such as in-situ
or in-transit analysis that may have needs of temporarily persistent

1Adaptive mesh refinement

https://doi.org/10.1145/3205289.3205316
https://doi.org/10.1145/3205289.3205316

ICS ’18, June 12–15, 2018, Beijing, China François Tessier, Paul Gressier, and Venkatram Vishwanath

data. A cost model we detail can determine the most appropriate
location where data aggregation should take place. To validate our
approach, we show how this method can outperform traditional I/O
calls on a synthetic benchmark and the I/O kernels of two real ap-
plications. We focus our experiments on a visualization cluster and
a leadership-class supercomputer located at Argonne National Lab-
oratory, USA, offering the characteristics of the pending exascale
architectures.

2 CONTEXT AND MOTIVATION
We first present in this section a state of the art of the current and
upcoming new tiers of memory and storage one has to take into ac-
count for improved performance. We also briefly broach the subject
of the necessity of an abstraction layer handling those resources.
Then we dive more deeply in data aggregation algorithms and par-
ticularly though the two-phase scheme widely used in modern I/O
libraries.

2.1 Complex large-scale architectures
The current and future high-performance architectures offer to
address the I/O challenge by providing faster and more complex
network interconnect as well as new types of memory banks and
storage systems. For instance, Mira, a 10 PetaFLOPS IBM BG/Q
supercomputer, features a 5D-torus interconnect (2GBps per link)
while Theta, a newly deployed 11.69 PetaFLOPS Cray XC40 system
hosts thousands of compute nodes connected with a Cray Aries
high-speed Dragonfly networkwhose bisection bandwidth has been
evaluated to 7.2 TBps. For its part, Sunway Taihulight in China,
which has topped the Top500 list for two years, links its more than
forty thousands nodes with a two-level fat tree topology (56 Gbps
per link).

On the memory and storage side, the complexity is significant as
well. The Intel Knight Landing processor deployed on most of the
today’s Cray systems embeds, in addition to DRAM, 16GB of high-
bandwidth on-package memory (MCDRAM) whose I/O bandwidth
can attain up to 380GBps. Some compute nodes also have a 128GB
local SSD giving the user data persistency during the job lifetime.
On Cori, at the National Energy Research Scientific Computing
Center, burst buffers have been added as a new layer between
compute nodes and the storage system. In a near future, the Intel
3D-Xpoint Optane SSD technology will provide up to 375GB of
memory featuring the attributes of both memory and storage in a
single tier. From a storage point of view, the architecture design of
a Lustre file system or a GPFS instance shows several differences
such as the stripping of the data, the number of concurrent streams
or the distribution of the gateway nodes into the topology.

Coming up with an abstraction of those resources insuring code
and performance portability is an open issue. A trade-off has to be
found out between a specific abstraction for every system that needs
to capture every phase of deployment or the software versions, and
a more generalized abstraction that maps to current and expected
future deep memory hierarchies and network interconnects. In
addition, the feature requirements differ from one research domain
to another (locality, performance, ...). We propose in this work an
abstraction layer that allows to move data from/to any type of
memory or storage.

Furthermore, this wide diversity and complexity of network
interconnects and sorts of memory and storage has a significant
performance potential on condition that they are efficiently ex-
ploited. A solution can be found in the domain of data aggregation
techniques.

2.2 Data aggregation
In order to limit concurrency and non-contiguous accesses on file
systems or memory, a preliminary phase of data aggregation is
often necessary before moving data. In the context of I/O, the two-
phase I/O algorithm is a widespread method consisting of selecting
a subset of the processing entities, called aggregators, to aggregate
contiguous pieces of data (aggregation phase) before writing/read-
ing it to/from the storage system (I/O phase). Figure 1 shows an
example of the two-phase I/O mechanism with four processes writ-
ing three-dimensional coordinates in a file on the storage system. In
this example, processes 0 and 2 are selected to aggregate data from
the other processes. The second phase aims to move contiguous
chunks of aggregated data to the storage system.

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z

I/O Phase

Aggr. phase

3210

0 2

Figure 1: Example of the two-phase I/O mechanism

More generally, a number of aggregators as well as an aggrega-
tion buffer size are set and multiple aggregation and I/O rounds are
performed to flush the total amount of data. That way, a fewer num-
ber of processing entities concurrently performs I/O operations
on disks and those operations tend to be done with contiguous
chunks of data, reducing the impact of the file system block size
and the number of reads and writes. However, the standard imple-
mentations of this method suffer limitations. In MPI collective I/O
operations for instance, no topology-aware aggregators placement
policy has been implemented. Similarly, the aggregation phase is
performed in the main memory of the aggregators, eclipsing the
other available tiers of memory. The work done in complex work-
flows sometimes take advantage of one of the levels of memory but
the proposed methods are usually designed for a specific workflow
and are not easily portable on different platforms and workloads.

In this work, we extend TAPIOCA, a collective I/O library based
on the two-phase scheme, to exploit themultiple tiers of memory for
improved data movements. While standard approaches aggregate
data in memory before moving it to/from a parallel file system,
our technique takes advantage of the available layers of the deep
memory hierarchy to perform the aggregation phase and can output
data on any kind of persistent storage.

Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on Large-scale SystemsICS ’18, June 12–15, 2018, Beijing, China

3 OUR APPROACH
We first introduce here the architecture abstraction on which our
memory-aware placement algorithm relies on. Next, we present
our cost model giving the most beneficial tier of memory or storage
where data should be aggregated for an increased I/O bandwidth.
Finally, we describe our data aggregation technique based on the
two-phase I/O scheme through the "read" algorithm we have imple-
mented and show a usage example. We will call our implementation
"MA-TAPIOCA" for "Memory-aware TAPIOCA" for the rest of the
paper.

3.1 Architecture abstraction
A key feature of our approach is to achieve code and performance
portability across a broad variety of architectures and an extensi-
bility in order to address future network interconnects and tiers
of memory and storage on exascale systems and beyond. To do so,
we have developed two abstraction layers with which our library
interacts for both efficient aggregators placement and management
of reads and writes on different levels of memory and storage. Fig-
ure 2 depicts how those components fit into MA-TAPIOCA while
Listings 1 and 2 show some of the API functions of those two
abstractions.

Memory API

Memory abstraction

D
R

A
M

H
B

M

N
V

R
A

M

P
FS

Application

MA-TAPIOCA

I/O Calls

Destination

Aggr. placement

Topology abstraction

BG/QXC40 ...

...

Figure 2: High-level view of MA-TAPIOCA and the two ab-
straction layers

Our memory abstraction (Listing 1) allows to allocate and free
buffers on any kind ofmemory or storage.memRead() andmemWrite()
functions are in charge of data movements from/to an allocated
buffer. As some operations are either asynchronous or need a pro-
cess involved to be completed, a memFlush() function has been
implemented to insure that all the initiated operations on the buffer
are finished. Functions giving vendors or experimental performance
values for the memory tiers are also available. ThememPersistency()
function returns the persistency capability of a memory tier. The
cost model we describe in 3.2 queries those values.

Technically, this memory abstraction internally calls the appro-
priate functions according to the type of memory managed. For
instance, if data is aggregated on the high-bandwidth memory, the
memkind2 library will be used for the (de)allocation. Depending on
the scope of the memory bank, the memory management technique
2http://memkind.github.io/memkind/

may vary. An on-node SSD, for example, is locally accessible with
regular I/O calls (POSIX, MPI, ...) but has to be exposed to remote
nodes in case of aggregation from multiple compute nodes. In this
case, we implemented this feature by mapping a file on SSD into
the main memory through a mmap system call then by exposing
this buffer to remote nodes with a MPI Window (RMA).

Listing 1: Function prototypes for memory/storage data
movements
b u f f _ t ∗ memAlloc (mem_t mem, in t bu f f S i z e , boo l masterRank ,

char ∗ f i l eName , MPI_Comm comm) ;
void memFree (b u f f _ t ∗ bu f f) ;
in t memWrite (b u f f _ t ∗ bu f f , void ∗ s r c Bu f f e r ,

in t s r c S i z e , in t o f f s e t , in t des tRank) ;
in t memRead (b u f f _ t ∗ bu f f , void ∗ s r c Bu f f e r ,

in t s r c S i z e , in t o f f s e t , in t srcRank) ;
void memFlush (b u f f _ t ∗ bu f f) ;
in t memLatency (mem_t mem) ;
in t memBandwidth (mem_t mem) ;
in t memCapacity (mem_t mem) ;
in t memPers i s tency (mem_t mem) ;

The network abstraction provides the relative location of com-
pute nodes as well as performance information. The distance be-
tween two nodes is defined according to the coordinates of the
nodes in the topology. This information is either gathered through
a vendor API or easy to determine on several topologies. The dis-
tance to the I/O node corresponds to the distance between the
calling compute node and the gateway node through which the
data packets transit to the storage system. Depending on the system,
a gateway node can be one of the compute nodes directly linked
to the storage system or a dedicated node whose function is to
forward I/O calls to the storage system.

Listing 2: Function prototypes for network interconnect
in t networkBandwidth (in t l e v e l) ;
in t networkLatency () ;
in t networkDistanceToIONode (in t rank , in t IONode) ;
in t networkDis tanceBetweenRanks (in t srcRank , in t des tRank) ;

3.2 Architecture-aware Aggregators Placement
The second main contribution of this work on data aggregation
consists of transparently selecting the most appropriate location to
place the aggregators. While some methods select a subset of nodes
to gather chunks of data, we consider a set of available memory
banks on nodes and chose among those tiers the ones fulfilling
the persistency and performance requirements. For instance, if the
number of aggregators is equal to the number of nodes (i.e. one
aggregator per node), we can locally aggregate data on the fastest
available memory tier. In case we have more than one node sending
data to an aggregator, the I/O bandwidth and the latency will be
probably bounded by the performance of the network interconnect.
Thus, a memory tier with enough capacity is sufficient. Another
criteria we included in ourmodel concerns data persistency. Awork-
flow including in-situ analysis for example may need temporary
persistent local data.

More generally, our cost model is based on both the application
needs (the data access pattern) and the network interconnect and
memory characteristics. Therefore, for each set of data producers
in which we need to elect an aggregator, given:
• VM : The set of heterogeneous memory banks fulfilling the
persistency requirements;

http://memkind.github.io/memkind/

ICS ’18, June 12–15, 2018, Beijing, China François Tessier, Paul Gressier, and Venkatram Vishwanath

• A ∈ VM : Amemory tier able to aggregate data, chosen among
the available memory banks;
• T : The target memory, usually a file system;
• Nbuf f : The number of aggregation buffers;
• Sbuf f : The aggregation buffer size;
• ω(u,v): The amount of data to move from one memory bank
u to another v , v ∈ VM ;
• d(u,v): The distance between memory banks u and v (hops
or bus), v ∈ VM ;
• l : The latency such as l =max (lnetwork , lv);
• Bu→v : The bandwidth from memory bank u to v with v ∈
VM , such as Bu→v =min (Bnetwork ,Bu ,Bv).
• C: The memory capacity

First, the selected aggregator has to fulfill a memory capacity
condition. The memory bank chosen to aggregate data has to have
a capacity greater or equal than the size needed for the aggregation
buffers. We consider two cases: with and without a need of persis-
tency. If the aggregated data needs to be persistent in memory, the
memory capacity has to be at least the sum of the data produced
for an aggregator.

CA ≥
∑

u ∈VM ,u,A
ω(u,A)

However, if persistency is not necessary, the memory capacity
must be able to contain the number of buffers required for aggrega-
tion. More formally, the memory capacity has to be such as:

CA ≥ Nbuf f × Sbuf f

Once this prerequisite has beenmet, we obtain a subsetVm ⊆ VM
containing the aggregators candidates from the set of the memory
banks. The next step consists of selecting the most appropriate
memory tier providing the best I/O bandwidth. To do so, we define
two costs CostA and CostT . CostA corresponds to the cost of ag-
gregating data onto the aggregator. To compute this cost, we sum
up the cost of each data producer i of sending an amount of data
ω(i,A) to a memory bank A used for aggregation. This cost takes
into account the slower bandwidth involved as well as the worst
latency.

CostA =
∑

i ∈VM ,i,A

(
l × d(i,A) +

ω(i,A)

Bi→A

)
CostT is the cost of sending the aggregated data to the destination

(typically, the storage system).

CostT = l × d(A,T) +
ω(A,T)

BA→T

Every node is in charge of computing the cost, for each of its
local memory bank, of being an aggregator. Let’s take as an example
a node hosting three different types of memory complying with
the persistency and capacity requirements mentioned previously.
Three pairs of {CostA,CostT } will be computed, on for each tier.

To determine the optimal location for data aggregation, we find
out the minimal value of the sum of these two costs among the
elements of Vm . More formally, our objective function is:

MemAware(A) =min (CostA +CostT)

Figure 3 illustrates this model with four processes that need
to collectively write data on a parallel file system (PFS). We con-
sider that each process is located on a different node. Two memory
banks inside a node are separated by one hop. Each node hosts two
types of memory in addition to the main memory (DRAM): a high-
bandwidth memory (HBM) and a non-volatile memory (NVR). The
source of the data is the DRAM (blue boxes) while the destination is
a Lustre file system (green box). There is no need for intermediate
persistency. Based on vendors values, we set in Table 1 the latency,
bandwidth, capacity and level of persistency of the available tiers
of memory and the interconnect network for this toy example.

HBM

DRAM

P1

DRAM

NVR

HBM

P3

DRAMNVR HBM

P2

DRAMNVR HBM

P0Lustre FS

NVR

1

1
4 4

3

5

1

2

1

2

4
1

1
1

Figure 3: Toy examples of four processes collectively writ-
ing data on a Lustre file system through a data aggregation
process.

Value# HBM DRAM NVR Network
Latency (ms) 10 20 100 30

Bandwidth (GBps) 180 90 0.15 12.5
Capacity (GB) 16 192 128 N/A
Persistency No No job lifetime N/A

Table 1: Memory and network capabilities based on vendors
information

Table 2 shows, for each process, the cost of aggregating data
on its local available tiers of memory. Our model shows that the
most advantageous location for aggregation is the high-bandwidth
memory available on the node hosting process 1. We can notice
that the difference between aggregation on HBM and DRAM is
negligible. We observed this result with real experiments on a
supercomputer equipped with those types of memory. Likewise,
this behavior has also been observed in recent work [11].

3.3 Data Aggregation algorithm
The main part of our data aggregation algorithm is an optimized
implementation of the well-known two-phase I/O scheme featur-
ing multiple pipelined aggregation buffers together with an I/O

Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on Large-scale SystemsICS ’18, June 12–15, 2018, Beijing, China

P# ω(i,A) HBM DRAM NVR
0 10 0.593 0.603 2.350
1 50 0.470 0.480 2.020
2 20 0.742 0.752 2.710
3 5 0.503 0.513 2.120

Table 2: For each process, according to the amount of data
produced (ω) and the network and memory information,
sum of the aggregation cost CostA and the I/O cost CostT .

scheduling wherein we describe the coming I/O transactions. In our
previous work [15], we detailed those optimizations as well as the
"write" algorithm we implemented. We present in Algorithm 1 the
"read" algorithm.We can mainly distinguish four blocks in this algo-
rithm. From line 14 to 20, we perform a first synchronization of the
processes involved in the read operation. During this phase, the pro-
cesses chosen to act as aggregators read from the input file a chunk
of data whose size is the size of an aggregation buffer (I/O phase).
From line 23 to 30, this data is distributed from the aggregators to
the other processes. The processes passing this conditional block
carry out a RMA3 operation (one-sided communication) to get data
from the appropriate aggregation buffer (aggregation phase, line
33). The last block, from line 36 to the end, is quite similar to the
second block. The processes whose data has been fully retrieved,
get stuck in a waiting loop, while the others recursively call the
read function.

Algorithm 2 shows a usage example of our datamovement library
when reading from a file on the parallel file system three arrays
representing coordinates. In this example, the aggregation layer can
be either defined by the user with an environment variable (MA-
TAPIOCA_AGGRTIER) or chosen with the aggregator placement
model described in Section 3.2. When using the first method, the
environment variable can be set to any memory tier implementing
the memory abstraction. The memory location is then computed
according to the only topology information. The second method
computes the cost of aggregating data on one or the other level of
the memory hierarchy and select the one with minimal cost. In this
case, the level of persistency required has to be set with the MA-
TAPIOCA_PERSISTENCY variable. Unlike MPI I/O, our approach
requires to describe the upcoming I/O operations (no more than the
parameters given to the I/O calls) in order to compute an internal
I/O scheduling (lines 6 to 9). The read operations are similar to the
MPI I/O API. The effort needed to use MA-TAPIOCA is very low
for the user.

While standard implementations are unaware of the underlying
architecture, we propose an architecture abstraction and a cost
model such as the aggregation location is either a user-defined
parameter or computed according to the data access pattern and
the hardware characteristics.

3Remote Memory Access

Algorithm 1:MA-TAPIOCA read algorithm.
1 GlobalRound ← 0;
2 ReadRound ← 0;
3 TotalRound ← ComputeNumberOfRounds (datasize);
55

6 Function MA-TAPIOCA_Read
(f ,o f f set ,data, size, type, status)

7 round ← GetRound();
8 aддr ← GetAggregatorRank();
9 chunkSize ← GetRoundSize(round);

10 bu f f erId ← дlobalRound % 2;
11 readId ← readRound % 2;
1313

14 if firstRead then
15 if I am an aggregator then
16 Pull_Buffer (readId);
17 readRound ← readRound + 1;
18 readId ← readRound % 2;
2020 Fence ();
2222

23 while round , дlobalRound do
24 if I am an aggregator AND

readRound < TotalRounds then
25 Pull_Buffer (readId);
26 readRound ← readRound + 1;
27 readId ← readRound % 2;
28 Fence ();
29 дlobalRound ← дlobalRound + 1;
30 bu f f erId ← дlobalRound % 2;
3232

33 RMA_Get (data, chunkSize , o f f set , aддr , bu f f erId);
3535

36 if chunkSize = size then
37 while дlobalRound , TotalRounds do
38 if I am an aggregator AND

readRound < TotalRounds then
39 Pull_Buffer (readId);
40 readRound ← readRound + 1;
41 readId ← readRound % 2;
42 Fence ();
43 дlobalRound ← дlobalRound + 1;
44 bu f f erId ← дlobalRound % 2;

45 else
46 MA-TAPIOCA_Read (f ,o f f set + chunkSize,data +

roundSize, size − chunkSize, type, status);

ICS ’18, June 12–15, 2018, Beijing, China François Tessier, Paul Gressier, and Venkatram Vishwanath

Algorithm 2: Collective reads using MA-TAPIOCA.
1 n ← 5;
2 x[n], y[n], z[n];
3 o f f set ← rank × 3 × n;
55

6 for i ← 0, i < 3, i ← i + 1 do
7 count[i] ← n;
8 type[i] ← sizeof (type);
9 o f st[i] ← o f f set + i × n;

1111

12 MA-TAPIOCA_Init (count , type , o f st , 3);
1414

15 MA-TAPIOCA_Read (f , o f f set , x , n, type , status);
16 o f f set ← o f f set + n ;
17 MA-TAPIOCA_Read (f , o f f set , y, n, type , status);
18 o f f set ← o f f set + n;
19 MA-TAPIOCA_Read (f , o f f set , z, n, type , status);
2121

22 MA-TAPIOCA_Finalize ();

4 EXPERIMENTS
4.1 Experimental setup
To evaluate our data aggregation algorithm, we concentrated our
effort on two systems located at Argonne National Laboratory.
First, we targeted Theta, a recently deployed 11.69 PetaFLOPS Cray
XC40 system that features some of the memory tiers we should
expect in exascale systems. This Cray system counts more than
four thousands Intel Knight Landing (KNL) nodes interconnected
through an Aries dragon-fly network. Each node embeds 64 hyper-
threaded cores and 192 GB of DRAM. 16 GB of MCDRAM per node
are also available. This high-bandwidth memory can be used either
as cache or as an allocatable memory. Each KNL node also hosts a
128 GB SSD which is cleared between two consecutive allocations.
A Lustre file-system manages the 9.2 PB of storage dedicated to this
platform. For our experiments, this file system were configured to
use 48 OSTs and a 8MB stripe size. The second system, called Cooley,
is an Haswell-based analysis and visualization cluster featuring
126 Intel Haswell E5-2620 nodes, each with 12 cores, 384GB of
memory and a local hard-disk drive (HDD). The 27 PB of storage
are managed with a GPFS file system. The interconnect is a 56Gbps
FDR Infiniband CLOS network.

We selected three different MPI applications to show the ben-
efit of our approach: a synthetic benchmark and two I/O kernels
respectively extracted from a computational fluid dynamics (CFD)
application and a cosmological simulation. The purpose of the
synthetic benchmark is to calibrate the subfiling technique and
give insights about initial data distribution. The I/O kernel of the
CFD application, called S3D-IO, takes advantage of the memory-
aware aggregator placement described in Section 3.2. Finally, we
use HACC-IO, the I/O kernel of a cosmological application, to study
various aggregation techniques performed with MA-TAPIOCA. For
all of our experiments, we set to 16 the number of MPI processes
per node performing I/O on the Cray system and 12 processes per

node on the Haswell-based cluster. We compared our results with
the MPI-IO implementation available on the target platforms. The
results presented in the rest of the paper are averages of at least
10 runs. Table 3 summarize our experimental setup. To fit in this
paper, we will limit the experiments on the visualization cluster to
HACC-IO.

Table 3: Experimental Setup

HPC Systems Cray XC40, Haswell-based cluster

Comparison MA-TAPIOCA, MPI-IO

Workloads
Synthetic benchmark
IO kernel of a cosmological application (HACC)
IO kernel of a direct numerical simulation (S3D)

Operations Write and read with various subfiling techniques

Memory, Storage

DDR: Main Memory
HBM: High-bandwidth memory
NVR: NVRAM, either a on-node SSD or HDD
HDD: Hard disk drive (Lustre and GPFS)
RAN: Network-attached memory bank

4.2 1D-Array benchmark
This benchmark allocates one buffer per process filled with random
values and collectively write/read it to/from the storage system. We
tried out three different configurations for the buffer size: every
process allocate the same buffer or a random buffer size is chosen or
the buffer sizes follow a normal distribution. To have a fair compar-
ison, the data distributions were preserved between experiments
with MPI-IO and MA-TAPIOCA.

Figure 4 shows experiments on 128 Cray XC40 nodes while
writing and reading data to a single shared file on the Lustre file
system. We selected 48 aggregators (DRAM) for both MPI-IO and
MA-TAPIOCA. We carried out three use-cases: the first one with
an array of 25K integers per process (100 KB), the second one with
a random distribution of the data among the processes (a value
between 0 and 100 KB) and the last one with a normal distribu-
tion among the processes. Our approach outperforms MPI-IO on
the three types of distributions. However, the performance gap is
particularly significant with a random and a normal distribution
seeing as the write bandwidth is respectively approximately 6 and
29 times higher while we read data 3 times faster.

Performing I/O operations on a single shared file is known to
provide poor performance. Subfiling is usually preferred. Figure 5
presents the results we obtained on the same platform while per-
forming subfiling, from one file per node to one file per 8 nodes.
In such a use-case, one aggregator is selected per group of nodes
writing or reading the same file. Data aggregation is performed on
DRAM while the destination of the data is the Lustre file system. In
addition, Unlike MPI-IO, MA-TAPIOCA allows to set the local SSD
as a shared destination tier. We also ran experiments showing this
feature. It has to be noted that the file created on each local SSD is
temporary (allocation lifetime). We can conclude from these results

Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on Large-scale SystemsICS ’18, June 12–15, 2018, Beijing, China

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

Fixed Random Normal

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Data distribution

MPI-IO Write
MA-TAPIOCA Write

MPI-IO Read
MA-TAPIOCA Read

Figure 4: 1D-array onCrayXC40, single shared file on Lustre

that one file per node is the configuration offering the best I/O band-
width for MPI-IO and our library. This "1:1" case was also evaluated
with a random data distribution as shown in Table 4. Again, the
best I/O performance is achieved with MA-TAPIOCA except on the
read case from the Lustre file system. We are still investigating the
poor read bandwidth obtained in most of our experiments.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1:1 1:2 1:4 1:8

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Ratio File:Nodes

MPI-IO Write
MA-TAPIOCA Write

MA-TAPIOCA on SSD Write
MPI-IO Read

MA-TAPIOCA Read
MA-TAPIOCA on SSD Read

Figure 5: 1D-array on Cray XC40, ratio nodes per file

Table 4:MPI-IO vsMA-TAPIOCA, one file per node on Lustre
and SSD (MA-TAPIOCA only) with randomdata distribution

I/O Operation MPI-IO
MA-TAPIOCA
Lustre SSD

Read Bw (GBps) 0.99 0.80 4.47
Write Bw (GBps) 2.46 5.89 4.32

Last, Table 5 gives the read and write I/O bandwidth achieved
on the Lustre file system when performing data aggregation on
the three tiers of memory available on the Cray system. In order
to highlight the differences, we increased the data size per process
to 1 MB. We first observe that the difference in performance is
not significant between aggregation on DRAM and HBM. This
experiment corroborates the cost model evaluation presented in
Section 3.2. We can also notice the overhead due to the file mapping
in memory (mmap) when aggregating data on the local SSD.

Table 5: MA-TAPIOCA, one file per node on Lustre while ag-
gregating on the three tiers ofmemory and storage available
on nodes. 1 MB per process.

I/O Operation DRAM HBM SSD
Read Bw (GBps) 8.96 8.24 7.80
Write Bw (GBps) 19.15 19.36 10.70

4.3 S3D-IO
S3D [7] is a state-of-the-art direct numerical simulation (DNS) For-
tran and MPI code in the field of computational fluid dynamics
(CFD), focusing on turbulence-chemistry interactions in combus-
tion. The DNS approach aims to address small domain problems to
calibrate physical models for macro-scale CFD simulations. S3D is
based on a 3D domain decomposition distributed across the MPI
processes. In terms of I/O, a new single shared file is collectively
written every n timesteps. The state of each element of the studied
domain is stored following an array of structure data layout. The
file as output is used both as a checkpoint in case of failure and for
data analysis. S3D-IO is a version of the S3D production code whose
physics modules have been removed. The memory arrangement as
well as the I/O routines have been kept though.

We implemented a module in S3D-IO using MA-TAPIOCA. For
those experiments, we let our architecture-aware algorithm de-
scribed in Section 3.2 automatically decide the most appropriate
tiers of memory for data aggregation among the compute nodes.

We first present in Table 6 a typical use-case of S3D with 134
and 537 millions grid points respectively distributed on 256 and
1024 nodes on the Cray XC40 system (16 ranks per node). We set
the number of aggregators to 96 on 256 nodes and 384 on 1024
nodes for both MPI-IO and MA-TAPIOCA. For this use-case, our
aggregator placement algorithm selected the HBM as an aggrega-
tion layer for all the 96 aggregating nodes. We can see that on the
two problem sizes, MA-TAPIOCA significantly outperformsMPI-IO.
When running on 1024 nodes, the I/O bandwidth is multiplied by 3.

Table 6: Maximum write bandwidth (GBps). Aggregation
performed on HBM with MA-TAPIOCA

Points Size 256 nodes 1024 nodes
MPI-IO 134M 160 GB 3.02 GBps 4.42 GBps

MA-TAPIOCA 537M 640 GB 4.86 GBps 13.75 GBps
Variation N/A N/A +60.93% +210.91%

ICS ’18, June 12–15, 2018, Beijing, China François Tessier, Paul Gressier, and Venkatram Vishwanath

Table 7: Maximumwrite bandwidth (GBps) while artificially
reducing the memory capacity. For each run, the grey box
corresponds to the memory tier selected for aggregation.

Run HBM DDR NVR Bandwidth Std dev.
1 16 GB 192 GB 128 GB 4.86 GBps 0.39 GBps
2 ↓ 32 MB 192 GB 128 GB 4.90 GBps 0.43 GBps
3 ↓ 32 MB ↓ 32 MB 128 GB 2.98 GBps 0.15 GBps

The second example, running on 256 nodes with 134 millions
grid points, artificially emphasizes the adaptability of our approach
in the event of the faster tier of memory available does not have
enough memory for aggregated data. Table 7 shows the results
obtained with S3D-IO on 256 nodes while the capacity of the high-
bandwidth memory (run 2) then the DRAM (run 3) has been arti-
ficially decreased to 32 MB. At the same time, we set the number
of aggregation buffers to 3 and their size to 16 MB. The capacity
requirement described in Section 3.2 not being fulfilled, the second
then the third faster memory tier are selected.

4.4 HACC-IO
HACC is a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques. HACC-IO
is the I/O kernel of HACC, in other words the application without
computation. In HACC, every process manages a number of parti-
cles. A particle is defined by 9 variables describing the coordinates,
the movement vectors and some state values. Data is stored in file
in an array of structure data layout. We previously showed with
the 1D-Array experiments that the best I/O bandwidth is achieved
with one file per node when doing subfiling. We kept this setting
for our experiments with HACC-IO. As HACC-IO is designed to
use a single shared file, we implemented another version using one
file per node. Except when explicitly mentioned, the experiments
on the Cray System where carried out on 1024 nodes (16K pro-
cesses) and on 64 nodes on the visualization cluster. For the coming
experiments, we explicitly set the aggregation layer through the
MA-TAPIOCA_AGGRTIER environment variable.

Figure 6 depicts the read and write bandwidth achieved on 1024
nodes on the Cray XC40 supercomputer while sharing a single file
as output and varying the data size per process. This result high-
lights the performance improvement MA-TAPIOCA can achieve on
a standard workflow, from the application to a parallel file system.
Data aggregation is performed on the DRAM in this set of experi-
ments. On both read and write, MA-TAPIOCA outperforms MPI-IO
respectively by a factor of 5.4 and 13.8 with a 1 MB data size per
process.

As demonstrated in 4.2, subfiling is a key method to improve
I/O bandwidth and reduce the proportion of the wall time spent
in I/O. As shown in Figure 7, writing one file per node on the
parallel file system improves the performance up to 40 times with
a large amount of data per process. On this case, MPI-IO and MA-
TAPIOCA offer I/O performance in the same confidence interval. As
mentioned previously, whatever the subfiling granularity chosen,
MA-TAPIOCA is able to use the local SSD as a file destination.
Therefore, we included the results when writing and reading data

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per rank (MB)

MPI-IO Write on Lustre
MPI-IO Read on Lustre

MA-TAPIOCA Write on Lustre
MA-TAPIOCA Read on Lustre

Figure 6: HACC-IO on 1024 Cray XC40 nodes, single shared
file

to/from this storage layer. In this case, the I/O bandwidth is boosted
in the range of 4 and 9 times when writing data and in the range of
6 and 8 when reading compared to the parallel file system.

 10

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d
w

id
th

 (
G

B
p
s)

Data size per rank (MB)

MPI-IO Write on Lustre
MPI-IO Read on Lustre

MA-TAPIOCA Write on Lustre (Agg: DDR)
MA-TAPIOCA Read on Lustre (Agg: DDR)

MA-TAPIOCA Write on SSD (Agg: DDR)
MA-TAPIOCA Read on SSD (Agg: DDR)

Figure 7: HACC-IO on 1024 Cray XC40 nodes, one file per
node on Lustre and local SSD. Log-scale on y-axis.

Figure 8 shows a weak scaling study of the previous experiment.
A process manages 1 MB of data. The aggregation is performed on
the DRAM of each aggregator and the target for output data is set
to the parallel file system and the on-node SSD. This last method
reveals a very good scalability as the I/O performance attained
increases by more or less 50% every time we double the number of
compute nodes.

Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on Large-scale SystemsICS ’18, June 12–15, 2018, Beijing, China

 0

 50

 100

 150

 200

 250

 300

256 512 1024

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Number of nodes

MPI-IO Write
MA-TAPIOCA Write

MA-TAPIOCA on SSD Write
MPI-IO Read

MA-TAPIOCA Read
MA-TAPIOCA on SSD Read

Figure 8: HACC-IO, one file per Cray XC40 node on Lus-
tre and local SSD. 1MB per process, varying the number of
nodes.

Our library, thanks to the memory abstraction we have proposed,
is able to aggregate data on the high-bandwidth memory available
on the compute nodes. Figure 9 compares an execution with ag-
gregation on DRAM and on HBM while writing and reading on
local SSD. In case of I/O operations on the Lustre file system, our
model shows that performance is limited by the network. The I/O
performance achieved is comparable with aggregation on DRAM
and on HBM. This result was expected given the performance gap
between the HBM and the SSD. In the future, the coming generation
of NVDIMM could completely disrupt this result.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

5000 15000 25000 35000 50000 100000

I/
O

 B
a
n
d
w

id
th

 (
G

B
p
s)

Particles per rank (38 bytes/particle)

Write - Aggregation on DDR
Write - Aggregation on HBM
Read - Aggregation on DDR
Read - Aggregation on HBM

Figure 9: HACC-IO on 1024 Cray XC40 nodes, one file per
node on local SSD. Comparison of the aggregation on DDR
and on HBM.

Finally, Figure 10 depicts a typical workflow that can be seam-
lessly implemented with MA-TAPIOCA. The workflow might be
either a single application performing write (simulation) and read

(analysis) operations consecutively like an in-situ analysis with
co-located processes or two different applications running during
the same allocation as the data is persistent on SSD for the allo-
cation lifetime. As described in section 3, MA-TAPIOCA allows to
use on-node local SSD as an aggregation layer. This task is done by
mapping a file created for the occasion on the SSD to the DRAM
of the node. An MPI window then exhibits this buffer to local and
remote nodes.

A
pp

lic
at

io
n

D
R

A
M

D
R

A
M

Parallel
file

system

Aggregation I/O

Write

Read

SSD

mmap

Figure 10: Write/Read workflow using MA-TAPIOCA and
SSDs as both an aggregation buffer and a target.

Table 8 shows the best I/O bandwidth achieved for write and
read as well as the best time to solution for the whole workflow.
The performance variation is based on the MPI-IO case and the MA-
TAPIOCA case using SSD. The first result row is for information
purpose. We can see that the overhead due to the mmap system
call is widely counterbalanced by the performance attained with
the read operation. The total time to solution is reduced by 26.82%.

Table 8: Max. Write and Read bandwidth (GBps) and total
I/O time achieved with and without aggregation on SSD

Agg. Tier Write Read I/O time
MA-TAPIOCA DDR 47.50 38.92 693.88 ms

MPI-IO DDR 32.95 37.74 843.73 ms
MA-TAPIOCA SSD 26.88 227.22 617.46 ms

Variation -36.10% +446.94% -26.82%

4.5 Portability
To assess portability of our architecture-aware data aggregation
algorithm, we ran experiments with HACC-IO on 64 nodes of an
Haswell-based visualization cluster. To take advantage of the fea-
tures we proposed in our data aggregation library on another plat-
form, there is no need to modify the application. Only the compila-
tion process and an implementation of the memory and network
abstraction are necessary.

The test-bed we targeted is not designed for intensive I/O. In addi-
tion, the on-node disks are hard disk drives with poor performance.

ICS ’18, June 12–15, 2018, Beijing, China François Tessier, Paul Gressier, and Venkatram Vishwanath

However, this machine is suitable for workflows as presented is
Figure 10. Beyond the I/O performance, these experiments are more
a proof of concept.

We show in Table 9 the results obtained with the workflow
described in Figure 10. To control the impact of GPFS caching, we
interleaved random I/O with HACC-IO write and read runs. We
can notice that the overhead caused by local aggregation on HDD
is very low. Again, the read bandwidth is significantly increased
while the overall I/O time is reduced by more than 12% on this
visualization cluster.

Table 9:Max.Write andRead bandwidth (GBps) and total I/O
time achieved with and without aggregation on local HDD

Agg. Tier Write Read I/O Time
MA-TAPIOCA DDR 6.60 38.80 123.41 ms

MPI-IO DDR 6.02 17.46 155.40 ms
MA-TAPIOCA HDD 5.97 35.86 135.86 ms

Variation -0.83% +105.38% -12.57%

5 RELATEDWORKS
Data aggregation is a widespread technique, particularly developed
in the context of intensive parallel I/O [12]. In MPI I/O libraries
such as ROMIO [16] based on the MPI-2 [6] standard, collective I/O
operations take advantage of data aggregation thanks to the two-
phase I/O scheme [2]. Some work has been done to optimize this
algorithm, whether it be within the MPI standard [19], as part of an
MPI-IO implementation [17, 18, 20] or while proposing a new MPI-
based collective I/O library [13, 15]. However, those approaches are
unaware of the available tiers of memory and storage and don’t
allow to easily benefit from these new resources.

Data movement optimizations based on data aggregation phases
are also studied in research areas focusing on workflows such as
in-situ or in-transit data processing. In [9], the authors have studied
how to take advantage of available SSDs to overcome the shortage of
DRAM for a specific workflow. Another approach consists in finely
describing the workflow and the movements of data involved [4, 5].
Nonetheless, those techniques require the user to have a strong
knowledge of its applications.

On the contrary, some work has been done from the runtime
perspective. In [3], the authors have proposed to address the I/O
bottleneck challenge by transparently moving data from the appli-
cation to the storage system through an intermediate fast storage
layer. Another interesting work [22] focused on using fast storage
layers (here, burst buffers) as a distributed file system while another
one [10] came up with a driver for MPI-IO able to take advantage
of a network-attached memory tier. However, those research tar-
gets very specific architectures and memory tiers, restraining the
portability.

To insure code portability and take into account the coming ex-
ascale machines embedding new tiers of memory and intermediate
storage, an architecture abstraction is necessary. Hwloc [1] is prob-
ably the most common hardware abstraction. However, this library
only provides qualitative information and does not consider the

interconnect network. At an higher-level, SharP [21] provides an
abstraction layer to allocate memory on any available tier. Yet, this
approach depends on the data model to handle (multi-dimensional
arrays, meshes, ...) and does not target workflows involving data
aggregation. Older work [8] focused on SMP architectures and de-
veloped a runtime interface able to compose with multiple runtimes
to leverage the memory hierarchy.

Our approach differs from all the above solutions by adopting
a method based on data aggregation taking into account the un-
derlying architecture through a memory and network interconnect
abstraction. Thus, MA-TAPIOCA can perform aggregation on any
available memory and storage tier and proposes a model minimiz-
ing the cost of data movement. Finally, our algorithm does not
depend on the application data model.

6 CONCLUSION
We have presented in this paper a data aggregation algorithm able
to take advantage of the underlying architecture. Particularly, we
showed how an architecture abstraction as well as a cost model
can mitigate the I/O bottleneck on current and future large-scale
systems. Our library has significantly improved performance on
traditional I/O workloads as well as more complex workflows ex-
pressing different I/O efficiency and data persistency requirements.
The way data is aggregated and moved from/to the storage system
can be either specified by the user or computed by our cost model.
This model will be at the center of our future research as we would
like to extend it such as it will be possible to describe a complete
workflow (multiple applications sharing data for instance) instead
of just the I/O behavior of one application.

In terms of performance improvements, we have demonstrated
on a benchmark and two real applications reduced to the only
I/O phases that we can outperform MPI-IO and offer much more
flexibility. We ran a large set of experiments up to 16K processes
on two systems at Argonne National Laboratory: Theta, a 11.69
PetaFLOPS Cray XC40 system and Cooley a visualization cluster,
both of them prefiguring the coming exascale systems. Particularly,
we showed on a workflow involving two workloads sharing data
that we can reduce the execution time by more than 26%.

As a future work, we would like to strengthen this approach, par-
ticularly by first studying the impact of input parameters in the cost
of moving data. The data access pattern for instance will be of inter-
est to characterize the applications and offer better improvements.
Another research track we would like to develop is multi-level data
aggregation. MA-TAPIOCA allows to determine or explicitly point
out one aggregation layer. A multi-level approach could surely be
of benefit to various workloads such as checkpointing.

ACKNOWLEDGMENT
This research has been funded in part and used resources of the
Argonne Leadership Computing Facility at Argonne National Lab-
oratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract no. DE-AC02-06CH11357
and DE-AC02-05CH11231. This work was supported in part by the
U. Department of Energy, Office of Science, ASCR, under award
numbers 57L32, 57L11, 57K50, and 5080500.

Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on Large-scale SystemsICS ’18, June 12–15, 2018, Beijing, China

REFERENCES
[1] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S.

Thibault, and R. Namyst. 2010. Hwloc: a Generic Framework for Managing Hard-
ware Affinities in HPC Applications. In Proceedings of the 18th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based Processing (PDP2010).
IEEE Computer Society Press, Pisa, Italia. http://hal.inria.fr/inria-00429889

[2] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. 1993. Im-
proved Parallel I/O via a Two-phase Run-time Access Strategy. SIGARCH Comput.
Archit. News 21, 5 (Dec. 1993), 31–38. https://doi.org/10.1145/165660.165667

[3] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, and N. Keen. 2016.
Data Elevator: Low-Contention Data Movement in Hierarchical Storage System.
In 2016 IEEE 23rd International Conference on High Performance Computing (HiPC).
152–161. https://doi.org/10.1109/HiPC.2016.026

[4] M. Dreher and T. Peterka. 2017. Decaf: Decoupled Dataflows for In Situ High-
Performance Workflows. https://doi.org/10.2172/1372113

[5] M. Dreher, K. Sasikumar, S. Sankaranarayanan, and T. Peterka. 2017. Manala:
A Flexible Flow Control Library for Asynchronous Task Communication. In
2017 IEEE International Conference on Cluster Computing (CLUSTER). 509–519.
https://doi.org/10.1109/CLUSTER.2017.31

[6] Message Passing Interface Forum. July 1997. MPI-2: Extensions to the Message-
Passing Interface. (July 1997). http://www.mpi-forum.org/docs/docs.html.

[7] Evatt R Hawkes, Ramanan Sankaran, James C Sutherland, and Jacqueline H Chen.
2005. Direct numerical simulation of turbulent combustion: fundamental insights
towards predictive models. Journal of Physics: Conference Series 16, 1 (2005), 65.
http://stacks.iop.org/1742-6596/16/i=1/a=009

[8] Michael C. Houston. 2008. A Portable Runtime Interface for Multi-level Memory
Hierarchies. Ph.D. Dissertation. Stanford, CA, USA. Advisor(s) Hanrahan, Patrick
M. AAI3302833.

[9] T. Jin, F. Zhang, Q. Sun, H. Bui, M. Romanus, N. Podhorszki, S. Klasky, H. Kolla, J.
Chen, R. Hager, C. S. Chang, andM. Parashar. 2015. Exploring Data Staging Across
Deep Memory Hierarchies for Coupled Data Intensive Simulation Workflows. In
2015 IEEE International Parallel and Distributed Processing Symposium. 1033–1042.
https://doi.org/10.1109/IPDPS.2015.50

[10] Julian M. Kunkel and Eugen Betke. 2017. An MPI-IO In-Memory Driver for Non-
volatile Pooled Memory of the Kove XPD. In High Performance Computing - ISC
High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-
IODC, IWOPH, IXPUG, Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt,
Germany, June 18-22, 2017, Revised Selected Papers (Lecture Notes in Computer
Science), Julian M. Kunkel, Rio Yokota, Michela Taufer, and John Shalf (Eds.),
Vol. 10524. Springer, 679–690. https://doi.org/10.1007/978-3-319-67630-2_48

[11] Jialin Liu, Quincey Koziol, Houjun Tang, Francois Tessier, Wahid Bhimji, Bran-
don Cook, Brian Austin, Suren Byna, Bhupender Thakur, Glenn Lockwood, et al.
2017. Understanding the IO Performance Gap Between Cori KNL and Haswell.
In Cray User Group Meeting.

[12] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study of
I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’15).
ACM, New York, NY, USA, 33–44. https://doi.org/10.1145/2749246.2749269

[13] Preeti Malakar and Venkatram Vishwanath. 2017. Hierarchical Read–Write
Optimizations for Scientific Applications with Multi-variable Structured Datasets.
International Journal of Parallel Programming 45, 1 (01 Feb 2017), 94–108. https:
//doi.org/10.1007/s10766-015-0388-z

[14] François Tessier, Preeti Malakar, Venkatram Vishwanath, Emmanuel Jeannot,
and Florin Isaila. 2016. Topology-aware Data Aggregation for Intensive I/O on
Large-scale Supercomputers. In Proceedings of the First Workshop on Optimization
of Communication in HPC (COM-HPC ’16). IEEE Press, Piscataway, NJ, USA,
73–81. https://doi.org/10.1109/COM-HPC.2016.13

[15] F. Tessier, V. Vishwanath, and E. Jeannot. 2017. TAPIOCA: An I/O Library for
Optimized Topology-Aware Data Aggregation on Large-Scale Supercomputers.
In 2017 IEEE International Conference on Cluster Computing (CLUSTER). 70–80.
https://doi.org/10.1109/CLUSTER.2017.80

[16] Rajeev Thakur, William Gropp, and Ewing Lusk. 1998. A Case for Using MPIâĂŹs
Derived Datatypes to Improve I/O Performance. In Proceedings of SC98: High
Performance Networking and Computing. ACM Press. http://www.mcs.anl.gov/
~thakur/dtype/

[17] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data Sieving and Col-
lective I/O in ROMIO. In Proceedings of the The 7th Symposium on the Frontiers
of Massively Parallel Computation (FRONTIERS ’99). IEEE Computer Society,
Washington, DC, USA, 182–. http://dl.acm.org/citation.cfm?id=795668.796733

[18] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. On Implementing MPI-IO
Portably and with High Performance. In Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems (IOPADS ’99). ACM, New York, NY, USA,
23–32. https://doi.org/10.1145/301816.301826

[19] Rajeev Thakur,WilliamGropp, and Ewing Lusk. 2002. Optimizing Noncontiguous
Accesses in MPI I/O. Parallel Comput. 28, 1 (Jan. 2002), 83–105. https://doi.org/
10.1016/S0167-8191(01)00129-6

[20] Yuichi Tsujita, Hidetaka Muguruma, Kazumi Yoshinaga, Atsushi Hori, Mitaro
Namiki, and Yutaka Ishikawa. 2012. Improving Collective I/O Performance
Using Pipelined Two-phase I/O. In Proceedings of the 2012 Symposium on High
Performance Computing (HPC ’12). Society for Computer Simulation International,
San Diego, CA, USA, Article 7, 8 pages. http://dl.acm.org/citation.cfm?id=
2338816.2338823

[21] M. G. Venkata, F. Aderholdt, and Z. Parchman. 2017. SharP: Towards Program-
ming Extreme-Scale Systems with Hierarchical Heterogeneous Memory. In 2017
46th International Conference on Parallel Processing Workshops (ICPPW). 145–154.
https://doi.org/10.1109/ICPPW.2017.32

[22] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. 2016. An Ephemeral Burst-
Buffer File System for Scientific Applications. In SC16: International Conference
for High Performance Computing, Networking, Storage and Analysis. 807–818.
https://doi.org/10.1109/SC.2016.68

http://hal.inria.fr/inria-00429889
https://doi.org/10.1145/165660.165667
https://doi.org/10.1109/HiPC.2016.026
https://doi.org/10.2172/1372113
https://doi.org/10.1109/CLUSTER.2017.31
http://stacks.iop.org/1742-6596/16/i=1/a=009
https://doi.org/10.1109/IPDPS.2015.50
https://doi.org/10.1007/978-3-319-67630-2_48
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1007/s10766-015-0388-z
https://doi.org/10.1007/s10766-015-0388-z
https://doi.org/10.1109/COM-HPC.2016.13
https://doi.org/10.1109/CLUSTER.2017.80
http://www.mcs.anl.gov/~thakur/dtype/
http://www.mcs.anl.gov/~thakur/dtype/
http://dl.acm.org/citation.cfm?id=795668.796733
https://doi.org/10.1145/301816.301826
https://doi.org/10.1016/S0167-8191(01)00129-6
https://doi.org/10.1016/S0167-8191(01)00129-6
http://dl.acm.org/citation.cfm?id=2338816.2338823
http://dl.acm.org/citation.cfm?id=2338816.2338823
https://doi.org/10.1109/ICPPW.2017.32
https://doi.org/10.1109/SC.2016.68

	Abstract
	1 Introduction
	2 Context and Motivation
	2.1 Complex large-scale architectures
	2.2 Data aggregation

	3 Our Approach
	3.1 Architecture abstraction
	3.2 Architecture-aware Aggregators Placement
	3.3 Data Aggregation algorithm

	4 Experiments
	4.1 Experimental setup
	4.2 1D-Array benchmark
	4.3 S3D-IO
	4.4 HACC-IO
	4.5 Portability

	5 Related Works
	6 Conclusion
	References

