Topology and affinity aware hierarchical and
distributed load-balancing in Charm++

Emmanuel Jeannot
Inria Bordeaux Sud-Ouest
Talence, France
Email: emmanuel.jeannot@inria.fr

Abstract—The evolution of massively parallel supercomputers
make palpable two issues in particular: the load imbalance and
the poor management of data locality in applications. Thus, with
the increase of the number of cores and the drastic decrease
of amount of memory per core, the large performance needs
imply to particularly take care of the load-balancing and as
much as possible of the locality of data. One mean to take
into account this locality issue relies on the placement of the
processing entities and load balancing techniques are relevant
in order to improve application performance. With large-scale
platforms in mind, we developed a hierarchical and distributed
algorithm which aim is to perform a topology-aware load
balancing tailored for Charm++ applications. This algorithm is
based on both LibTopoMap for the network awareness aspects
and on TREEMATCH to determine a relevant placement of
the processing entities. We show that the proposed algorithm
improves the overall execution time in both the cases of real
applications and a synthetic benchmark as well. For this last
experiment, we show a scalability up to one millions processing
entities.

I. INTRODUCTION

Scientific applications needs for computing power are con-
tinuously increasing. In order to match these needs, larger and
larger parallel computers are designed and built. Optimizing
the use of the underlying physical resources is an essential
objective in order to take advantage of the current complex
multicore architectures of the nodes. One other issue stems
from the fact that parallel applications have to deal with
problems featuring irregular structures that can easily induce
a load imbalance at the CPU level. Such an imbalance can
in return yield counterproductive effects on the application
performance. For instance, a process that has finished its work
will become idle if it has to wait (synchronize) for another
more loaded process still computing. In such a case, this
idleness leads to a considerable waste of CPU cycles. This
issue is even more prominent as the number of processes
grows. Therefore, balancing the load among the processes is
an efficient and relevant optimization technique to decrease an
application execution time.

However, load balancing can be detrimental to data locality
since it involves processes/tasks movements and migrations
across the computing platform. In case of internode move-
ments, it implies network communications whilst in case of in-
tranode movements, Non-Uniform Memory Access (NUMA)
effects are likely to degrade performance. Since data locality is

Guillaume Mercier
Bordeaux INP
Talence, France
Email: guillaume.mercier@bordeaux-inp.fr

Francois Tessier
Inria Bordeaux Sud-Ouest
Talence, France
Email: ftessier@anl.gov

a key-factor for large-scale applications performance, it should
also be taken into account by load balancers.

Improving or managing efficiently data locality is not
an easy task, especially in the context of large clusters of
multicore nodes. Indeed such computers feature intricate and
hierarchical memory systems with several cache levels and
banks physically scattered across the whole machine. This
trend is going to gain momentum with the forthcoming advent
of new memory technologies (e.g. NVRAM) because main
memory will now be made of several levels of different mem-
ory types. Data locality can be managed in various fashions,
one being to create a match between the physical topology
(that is, the CPUs and memory hierarchy layout) and a virtual
topology that describes the application bahaviour. For instance,
an application communication pattern (in case of processes)
or the pattern of memory accesses (in case of threads) are
pertinent instanciations of virtual topologies.

We developed an algorithm, called TREEMATCH [1] that
computes such a matching between the physical entities de-
livering the computing resources and the virtual entities (e.g
processes or threads or tasks) handling the data and performing
the computation. TREEMATCH uses a qualitative approach as
it relies on the structure of the underlying physical topology.
It has been successfully integrated within MPI libraries and
runtimes in order to perform MPI process placement [2] and
rank reordering [3]. Therefore, an intuitive idea is to expand
load balancing algorithms and mechanisms with TREEMATCH
in order to make them data locality-aware.

For instance, the Charm++ parallel programming environ-
ment [4] natively features load balancing mechanisms. In
Charm++, the load is divided among chares that are able
to migrate across the platform. Hence, migration is used to
balance the load, as opposed to work-stealing (for instance).
Another interesting and useful feature of Charm-++ is its ability
to provide the user with various pieces of information during
an application execution. For instance, information dealing
with the workload evolution or the communication pattern can
be exploited.

The contribution of this paper is a scalable parallel and
distributed load balancer fully topology-aware (both at the
nodes and at the network levels) that takes into account
the computation as well as the communication cost of the
application.

This paper is organized as follows: a state of the art is
given in Section II. The topology mapping problem is exposed
in Section III. The proposed load balancer is detailed in
Section IV, while Section V describes the experiments carried
out and the results obtained. Finally, Section VI concludes this

paper.
II. STATE OF THE ART

Charm++ [4], [5], [6] is a message-passing based program-
ming environment that uses an object-oriented approach and
relies on the C++ language. However, whilst MPI considers
processes in its model (usually with a rather coarse granular-
ity), Charm++ rather uses finer-grain objects and dispatches
the computation onto small migratable tasks called chares.
These chares, in addition to their assigned data and their ability
to exchange messages asynchronously, are also characterized
by their CPU load, their I/O communication volume and
some other useful parameters. To manage these processing
entities, an adaptive runtime support is essential [7]. The
Charm-++ runtime system is able to handle the various physical
resources, to enforce fault tolerance or manage load balanc-
ing [8], [9]. Regarding the load balancing aspects, Charm++
makes it possible to design, plug in and test load-balancers
transparently without modifying the application code. Also the
design of the Charm++ runtime system allows to perform load
balancing at different frequencies during the execution of the
application [10], [11].

Several generic load balancing mechanisms natively exist in
Charm++ [12], but are tailored and give the best results for a
specific optimization area. Common load balancing schemes
that consider the CPU load on each processing unit have been
extended in some works to also take into account the topol-
ogy of the underlying architecture [13], [14]. For instance,
Bhatelé and al. [14] show the gains obtained by applying a
chare placement depending on the structure of a 3D torus
in the context of an adaptive mesh refinement applications.
Hierarchical load balancing (i.e. multilevel topologies) has also
been investigated [15] [16] while other methods are designed
to be distributed in order to achieve a satisfactory level of
scalability on large-scale platforms [17]. NucoLB! [18] and
HwTopoLB [19] apply a load balancing scheme based on
a quantitative assessment of the topology links (latency and
bandwidth values are mandatory). As a consequence, this
type of strategy requires to gauge the target architecture
communication performance with the appropriate tools before
running any application. Our TREEMATCH-based solution is
more flexible and dynamic since we fully rely on a qualitative
approach for our representation of the hardware topology.
TREEMATCH does not require to assess the performance of the
system on which the application is running. We believe that
this is a strong advantage, as gathering such information is
error-prone, might be incomplete and is subject to inaccuracy.

We already worked on a topology-aware load balac-
ing algorithm in Charm++ using TREEMATCH [20] called

IPlease note that NucoLB is designed for shared-memory machines.

TMLB_TREEBASED. However, this load-balancer suffered
from critical limitations (handled topology, scalability, load
balancing techniques, etc.). The completely redesigned algo-
rithm described in this paper is no longer limited to tree-shaped
networks which is undeniably a more realistic approach. Most
of the algorithm is distributed and hierarchical, improving
significantly the capacity of scaling while the distribution of
the work is parallelized in a master-worker fashion. Besides,
we modifed the part of the algorithm in charge of the CPU
load balancing into a tunable refinement approach.

III. CONTEXT AND PROBLEM DEFINITION

We consider a Charm++ application with both load bal-
ancing and migration capabilities enabled. The load balanc-
ing phase is executed periodically by the Charm++ runtime
system. The application is composed of multiple processes
that are bound on their dedicated CPU cores. Each process
executes a given set of Charm++ chares. The load balancer
possesses the following pieces of information. (1) The load
of the different chares (keep in mind that the number of
chares is greater than the number of processes). This load
actually represents the amount of CPU used by each chare
since the last load-balancing phase. (2) The affinity between
chares. This affinity is represented by a communication matrix
which values are the amount of communication between a
pair of chares since the last load-balancing phase. (3) The
system topology. Here, we deal with two kinds of topologies:
first, the node internal topology, where the memory hierarchy
is represented by a tree and second, the network topology
which forms an arbitrary graph where each vertex represents
an allocated compute node for the application.

Both the load and the affinity of the chares are computed
by the Charm++ runtime system and are available in the
load-balancing code through the Charm++ API as a set of
standard arrays or matrices. The node topology is retrieved
thanks to the hwloc tool [21], following the assumption that
all nodes feature a similar topology across the supercomputer
(which is the case in most of today’s top-end HPC systems).
The network topology is obtained either through the batch
scheduler or a standard system service that can be queried by
the application to collect the graph of allocated resources (i.e.
compute nodes). For instance, on the BlueWaters system, such
information is obtained thanks to the xtdb2proc command,
provided as part of the Cray environment of the machine.

Based on this information, our goal is to compute a new
chares allocation for the processes so that the application
overall execution time is decreased?. Experiments carried out
in related works [18], [19], [20] have shown that taking
solely into account the load to perform the load balancing
leaves room for improvement. Indeed, due to both the network
topology and the memory hierarchy, the communication costs
between processes or chares have also to be considered. As

2Qur proposed algorithm and solution have been implemented in Charm++.
However, this approach is generic and could find its place in any other
runtime system featuring migration, provided the ability to gather the pieces
of information described above.

a consequence, in order to tackle the issue of load balancing,
this work considers not only the load but also both the affinity
between the various computing entities of the application and
the underlying target hardware topology.

IV. SCALABLE TOPOLOGY AWARE LOAD BALANCING AT
SYSTEM SCALE

A. Overview

In order to solve our problem we need to design a scalable
load-balancing algorithm that takes into account the chares
load, the chares affinity and the topology of the target machine.
The chares distribution is computed at each load-balancing
step. This computation is two-fold: globally at the nodes level
and then inside each node, chares are assigned to cores in
parallel. For the nodes step, we balance the CPU load at this
level of hierarchy first and then we move groups of chares on
nodes to reduce the communication costs. For the cores step,
we first compute an affinity-aware chares placement then we
apply a refinement algorithm to level the CPU load.

B. On the Need of a Global Load-balancing Phase

We first discuss the need for a global chare allocation
and load-balancing step. One could devise a fully distributed
algorithm with no global load-balancing phase (that is, chares
would stay on their nodes and would only move from one
core to an other). But the following theorem shows that the
probability can be extremely high that at least one pair of two
nodes has an imbalance factor greater than a given ratio.

Theorem 1: Let m be the number of nodes of a run. Let
n be the number of chares per node. Assuming that chares
have a duration time uniformly distributed in [a,b] then the
probability ¢ that there is two nodes which imbalance ratio is
greater than « is

m(m+1)
2

g=1-(1-p)

where p = 2 — 29 gj MH“ and ® is the cumulative
distributed function (CDF) of the standard normal distribution
N(0,1).
PROOF.

Let us consider that we have n chares per node. Let us
suppose that the duration time of the chares is uniformly
distributed between [a,b]. Hence, by definition of the uni-
form distribution, the mean duration time of the chares is:
w= b"'“ and the variance of the duration time of the chares

is: 02 = =2 a) . On a given node, the sum of the duration

times of the chares has a mean of ps = nu and a variance
of 02 = no?. If n is large enough?, we can apply the central
limit theorem to compute the distribution X; of the sum of
the duration times of the chares on node :. Assuming that
the duration time of the chares is independent and identically
distributed, then, X; does not depend on % and, by the central
limit theorem,

3in [22] Chap. 13, the central limit theorem is applied if n > 30 which is
the case for all the runs we are doing

X N no?) = A (n(b;— @) n(b1—2a)2>

where N is the gaussian (normal) distribution and X ~ D
means that the random variable X follows distribution D. Let
us first answer the following question: what is the probability
p that the ratio of duration times of all the chares of two nodes
(¢ and j) differs by more than a given oo > 0? This can be

written:
X, — X;
p:P(‘] Za) =P(Z| > «a)
np

where

7 Xi—X; Xi—X;

- - n(b+a)

nu nlota)

From the rule of normal distribution difference, we have: X; —
i ~ N(0, 2522 —a)”). Then, thanks to the scaling property of
the gaussian dlstrlbutlon s
an(b—a)? 4 _ 2(b—a)?
Z~N|(0 (12 m) =N (0’ 3n(b+a)?) '
Moreover, if we put: Y = S —
2(b—a)? 6n(b+a)?

b—a
N(O’ 3n(b+a)? 4(b—a)?

V6n b+ta
) = N(0,1), we can simplify the
solution even further:
H%ﬂz@—P<Yza

1—IP’< Vonb+a

"2 b—a
Therefore, as Y is the standard normal distribution we have:

p:1_<¢< th+a>_¢< W%b+a>>

2 b—a 2 b—a
Where @ is the cumulative distributed function (CDF) of
N(0,1). As (0, 1) is symmetric around 0 we have ®(—x) =
1 — &(x) therefore, p =2 — 2® (a@gf—z) and o > 0.
Interestingly, since @ is increasing, we see that p is de-
creasing (as expected) with n and «. Note also that even if
p depends on a and b that if b = r X a (b is a multiple of a

then, &2 = 1 jg constant.

> b—a ~ r—1

However, p is simply the probability that two nodes have a
load ratio greater than «. If we call g the probability at least
one pair of nodes (among the m used in the run) have a load
ratio greater than o« we have:

g=1-(1-p)
m(m+1)
2

~

p b—a

\/6nb+a>
2

<Y <a

Vénb+a
2 b—a)

m(m+1)
2

Indeed we have pairs of nodes and (1 — p)w

is the probability that all pairs have a ratio lower than a. [J
Table I outlines the results for different realistic scenarios.
We see that in most of the cases, there is a high probability
that at least two nodes are highly imbalanced. This advocates
for the use of a global balancing step where we allow to move

4 2 X—
If X ~ N(p,02) then ==# ~ N(0,1)

any chare to any node. Note that the first line of the Table I
corresponds to an experimental case of this paper.

TABLE I: p: probability that a given pair of nodes has a load
imbalance ratio greater than o when having m nodes, n chares
per nodes and the load of the chares is uniformly distributed
in [a,b]. ¢: probability that at least one pair of nodes has an
imbalance ratio greater than «.

n |m Ja Ja |b | p| g
64 [128 | 0.05 [50 | 100 | 142% | 100%
32016 |01 |75 | 125 | 06% | 948%
64 | 8 | 01 |60 | 140 | 14% | 404%
64 | 256 | 0.05 | 100 | 130 | 0.02% | 99,7%

C. Computing the Chares Placement at Nodes Level

As shown above, global chare placement is often mandatory.
Such a step is based on LibTopoMap which is able to compute
a mapping on any arbitrary topology. To do so, we first need
to compute the node topology (based on the job allocation)
and then call LibTopoMap to compute the new allocation.

1) Computing the Allocated Nodes Topology: In order to
balance the workload by taking into account both the network
topology and the memory hierarchy and layout, we need
to compute the topology formed by the nodes allocated by
the batch scheduler. Then we apply to these nodes a local
numbering scheme (starting from zero). In the case of a fat-
tree network, the nodes numbering is performed in topological
order and the network spans the part of the tree used by the
allocated nodes. If not, building the topology of the allocated
nodes requires to extract the global coordinates of the nodes
as well as their interconnections and then to renumber the
nodes in a topological order. For instance, the BlueWaters Cray
Gemini interconnect topology is a 3D torus. However, some
nodes in the torus are only routers and compute nodes are
connected to the routers as there are two compute nodes per
router (c.f. Fig. 1a).

We proceed as follows: (1) Extraction with the Cray tools of
the smallest 3D grid of routers including all the compute nodes
allocated by the resource manager. Each router features a set
of (z,y,z) coordinates in the 3D torus; (2) Renumbering of
the routers in topological order (z, then y, then 2); (3) Creation
of an adjacency list of every routers of the grid; (4) Creation
of the link between each compute node and its router; (5)
Exclusion of the nodes not part of the resource allocation; (6)
Output a file in a LibTopoMap-readable format.

As opposed to TREEMATCH, LibTopoMap relies on a
quantitative approach. To fulfill this requirement, we defined
the weights of the topology edges as follows : the x-axis
and z-axis weights are twice as large as the y-axis’. This
choice is motivated by a particular feature of the Cray Gemini
interconnect routers as illustrated by Figure la. All axes
possess two interconnection links except for the y-axis where
one link is devoted to the connection of compute nodes.

Figure 1b depicts how this step works. We can see a 3D
grid which includes the allocated routers (blue vertices). The

compute nodes are not shown but are indeed connected to these
routers temporarily renumbered following the (x,y, z) order.
Then, the corresponding adjacency list is given to LibTopoMap
to compute the relevant placement.

2) Global chares allocation: As explained previously, the
global chares allocation (i.e. assigning balanced groups of
chares on nodes) is a two-step process.

From theorem 1 it is likely that at least two nodes are highly
imbalanced. Therefore, we first smooth the load so that the im-
balance factor o between two arbitrary nodes is lower than 5%.
To do so, we perform a very simple set of refinements of the
load by swapping the highest loaded chares from overloaded
nodes for the lowest loaded one from underloaded nodes. After
this step, all the nodes roughly possess an equivalent load. Of
course, this step is not performed if the load is already evenly
distributed among the different nodes.

The second part consists in moving groups of chares by
taking into account their affinity and the communication cost
of the network. We use the LibTopoMap [23] library during
this step because of its following pros: it works in a distributed
fashion (as an MPI-based library) and it is able to find an
efficient placement of MPI processes on a cluster of compute
nodes regardless of the network topology (that is, not only
tree-like topologies).

This library makes use of the virtual topologies management
features of the MPI standard to determine this process place-
ment. In the load-balancing algorithm presented in this paper,
we use LibTopoMap in order to perform a first placement of
the groups of chares on the nodes. Since Charm++ also uses
MPI in its internal communication layer, we can access to the
native MPI functions. As LibTopoMap only needs one MPI
process per node to compute its network-aware placement,
we select a rank on each node and create a dedicated com-
municator with MPI_Comm_split. LibTopoMap considers
the node communication matrix. This matrix describes the
affinity between groups of chares that are already assigned to
a given node. LibTopoMap uses Metis [24] to assign groups
of chares to the nodes according to the topology computed in
Section IV-C1 and the communication matrix.

D. Fine Placement of the Chares on the Cores

In the previous step, groups of chares are migrated from one
node to an other according to their load, their affinity and the
topology. In this step we assign chares to cores on each node,
according to the same criteria but in a distributed fashion.

In this step, we need each core to be assigned an equal
load and that the communication between chares is taken into
account as well as the node topology. For taking into account
the topology, we use the hwloc tool which provides a simple
way to apprehend the memory and cache hierarchy as well as
the core numbering. Remind that the affinity between chares
and their load is provided through the Charm++ APIL

1) Master Algorithm: As each node performs its load-
balancing step for its own set of chares, no global communi-
cation step is needed. Indeed, each node can perform its own

VAR
=,

Cray Gemini -
Router

—=f
a1

(a) Cray Gemini router from a 3D torus. One link on the y-axis is
reserved to connect the compute nodes.

(b) Extraction of the network topology of a sub-part of the Gemini
3D torus. Each vertex is a router to which computing nodes are
connected.

Fig. 1: Cray Gemeni topology management

Algorithm 1: The TREEMATCH Parallel Load balancing
Algorithm: Master Algorithm

Input: m_global_chares The communication
matrix between application chares
Input: M current mapping of the chares
to the cores
2 // In parallel on all cores of the
master node
3 for every node i do in parallel
4 m_chares[i]
extract_sub_matrix(m_global_chares, 1,
M) // The communication matrix
between chares for node ¢

5 async.call result[i] < compute_1lb(m_chares]i],
0);

6 for every node ¢ do in parallel

7 when result[i] has arrived;

8 result < aggregate_result(result[i]);

step independently from the others and in parallel. To dis-
tribute the load among all the nodes, we use a master/worker
scheme. The master algorithm is described in Algorithm 1 and
features two phases: the first one is to decompose the global
communication matrix into local communication matrices to
be used by each node. To do so, we extract the element
of the m_global_chares global communication matrix that
corresponds to the chares of node i. This is done thanks to
the knowledge of the current mapping of the chares M. As a
master node possesses in general several cores, we use these
cores to perform this phase in parallel. To do so, we create
a parallel OpenMP section that extracts the communication
pattern of the group of chares of each compute node (lines 2
to 4). The second phase is to distribute the chares mapping
of each node to the corresponding node. Therefore, each node
computes the placement of its own set of chares. To be more

specific, the call to compute_1b on line 5 is distributed
thanks to Charm++ mechanisms and each node computes its
chares placement in parallel. The call to compute_1b is done
asynchronously. When each local result of node i is returned
(line 7), it is aggregated to compute the final global placement
of the chares (line 8). This global scheme is depicted in Fig 2.

2) Worker Algorithm: Each node receives the communi-
cation matrix corresponding to its own set of chares and
computes the placement of these chares on its own cores. The
worker algorithm is depicted in Algorithm 2 and is executed
on each node, including the master one. Each worker knows
the load and the affinity of the chares. The first step of the
algorithm consists in getting the topology tree T' of the node.
Each leaf of T' thus corresponds to a core. The problem is
that generally we have much more chares than cores. We
therefore need TREEMATCH to perform the assignment with
oversubscribing (line 3). To this end, we compute the ratio r
between the number of chares (n) and the number of cores
(c). We extend the tree 7' by adding a new level to the tree
with r leaves to each core of T, leading to a tree T with
¢ = r x c leaves. TREEMATCH then assigns each chare to a
leaf of T”. In order to balance the number of chares to cores,
we constraint the TREEMATCH algorithm so that chares are
evenly distributed.

Then the solution p (line 3) is such that chares assigned
to leaves (of T”) corresponding to the same core (of T') are
actually assigned to this core. In this case we have at most
r chares per core of the node. Then solution p is refined
(line 4). The goal of this step is to take into account the load
imbalance between different cores. This refinement step works
as follows: chares are topologically sorted according to the
core they have been assigned to. Then cores are considered
one after the other: if a considered core is the least loaded
one, then it steals other chares starting from the closest leaf
until it is no longer the least loaded one. In this way, we keep
the chares that communicate a lot close to each other and
the above refinement allows for a good repartition of the load

Master node

3 : Result [TT 1] [computing uni
g; = {2)57170a 374} @
1 : Parallel distribution
m_charesi] JiEN

2 : Local computation

N the set of nodes

- L) L

[T] - LT

g

Worker Node 1

Worker Node 2

Worker Node n

Fig. 2: Master-Worker scheme of the Distributed Load Balancer

among the cores.

Algorithm 2: Worker Algorithm. Implementation of the
compute_1b function

Input: m_chares The communication matrix
between chares inside the
considered node

Input: [_chares Array of the load of the
Chares inside the current node

Input: » Number of chares to be assigned
on the considered node

Input: ¢ Number of cores of the considered
node

1 T + hwloc_get_topology();

2 7+ [n/c]// Over subscribing ratio

3 p<tm_oversubscribe_chares_to_cores
(m_chare, T, r);

4 return refine_solution(p,l_chares);

Every node returns its result back to the master so it can
build a global view of the chares mapping and commit the
chare migration using internal Charm++ features. No actual
migration occurs before this point.

V. EXPERIMENTAL VALIDATION

In this section, we present the results obtained with our
load balancing algorithm. We chose three applications to
evaluate our solution. The first one, called ChaNGa, is a
cosmological application designed to perform collisionless
N-body simulations. The second application, Ondes3D, is a
simulator of three-dimensional seismical waves propagation.
The third one named CommBench is a benchmark simulating
irregular communications.

A. ChaNGa

The first selected application is a cosmological simulator.
Its main goal is to perform collisionless N-body simulations
while using a Barnes-Hut tree to calculate gravity [25], [26],
[27]. This application has been written in Charm++ in order
to exploit the Charm++ features and particularly its ability
to migrate chares to balance the CPU load. As a use case,
we worked on Lambb [28] which is an 80 million particles

representation of a 70 Mpc (Megaparcec) volume. According
to the ChaNGa documentation, this simulation is used to cal-
culate the mass function of dark matter halos in a dark energy
dominated universe down to the scale of dwarf galaxies. The
experiments on this real application were carried out both
on the PlaFRIM cluster and the Blue Waters supercomputer.
For each experiment, we compared our load balancing algo-
rithm to an execution without load balancing (NoLB) and to
other load balancers. RefineLB and GreedyLB are standard
load balancers available within Charm++. RefineLB migrates
chares from overloaded cores to underloaded cores to reach
an average load. This strategy has the advantage to limit
the number of chares migrations. GreedyLB re-assign all the
chares by mapping the highest loaded chare to the least loaded
core. Even if these load balancers were not designed for
this particular use case, we choose to compare our solution
with Orb3dLB_notopo (based on recursive bisection to find a
balanced stat) and MultistepLB_notopo (considers a range of
different timesteps to take its decision). Indeed, these strategies
were developed for specific use cases of ChaNGa and help
us to show that TREEMATCHLB is a generic, yet relevant
approach. It has to be noted that the load balancing time is
included in each measurement of these experiments.

ChaNGa walltime for the lambb use-case on PlaFRIM
when varying the number of processes

3000 - NolLB === GreedylB ——3 i
TreeMatchLB MultistepLB_notopo E=mmm

RefinelB mmmmm Orb3dLB notopo C—1

2500

2000

1500

1000

Execution time (in seconds)

500

128
Number of cores

Fig. 3: ChaNGa application walltime using different load-
balancers for the lambb use-case when varying the number
of cores on PlaFRIM.

ChaNGa walltime for the lambb use-case on 16 XE6 nodes (512 cores)
of Blue Waters when varying the load imbalance

4500 NolLB 3 GreedylLB C—3 7
= 4000 |- TreeMatchLB = MultistepLB_notopo === i
3 RefinelB mmmmm Orb3dLB notopo —4
c
S 3500 B M B .
o
Q
v 3000 .
£
o 2500 | .
£
S 2000 [7
c
S 1500 .
2
¢ 1000 .
X
w

500 B

10 25 50
Percentage of active particles (imbalance)

(a) Application walltime using different load-balancers for the lambb
use-case on for 512 cores (16 XE6 nodes) when varying the imbal-
ance.

ChaNGa walltime for the lambb use-case
on 32 XE6 nodes (1024 cores) of Blue Waters

3000

NoLB ===
TreeMatchlLB Emmmm
RefinelLB mmmmm
2500 GreedylB /3
MultistepLB_notopo ===
Orb3dLB notopo C—1
2000 - i

1500 - 4

1000 1

Execution time (in seconds)

500 1

(b) Application walltime using different load-balancers for the lambb
use-case on for 1024 cores (32 XE6 nodes).

Fig. 4: ChaNGa Blue Waters experiments

1) PlaFRIM: The PlaFRIM cluster is composed of nodes
featuring two Quad-core-INTEL XEON NEHALEM X5550
(2.66 GHz) processors. Each node offers 24 GB of 1.33GHz
DDR3 RAM and the 8 MB of L3 cache are shared between
the four cores of a CPU. Nodes are connected through an
Infiniband fat-tree network. We ran experiments on 64, 128
and 256 cores (respectively 4, 8 and 16 nodes) of the PlaFRIM
platform.

The results we obtained on this platform are depicted
in Figure 3. This figure shows the average execution time
of one step of the Lambb case for each number of cores
used. The first remark we can make is that TREEMATCHLB
yields a performance level that is at least on par with the
other strategies. On 64 cores, TREEMATCHLB is the fastest
approach while for the 128 and 256 cores cases, it competes
equally with Orb3dLB_notopo and MultistepLB_notopo. As
far as the load balancing time is concerned, our solution is
able to compute a chares placement in 600ms for 2048 chares
distributed among 256 cores while the other solutions perform
this in less than 50ms. In spite of this duration, the benefits
in term of performance counterbalance this additional cost.
Finally, it has to be noted that even if the results provided by
GreedyLB are really subpar, we observed this behavior on this
platform only but for several use-cases and applications.

2) Blue Waters: Blue Waters is a supercomputer from the
University of Illinois at Urbana-Champaign providing a peak
performance of 13.34 Petaflops. For these experiments, we
used XE6 nodes made of two AMD 6276 Interlagos processors
(16 cores each). Each node provides 64GB of main memory.
The interconnection network is a Cray Gemini 3D torus as
described in IV-C1. Considering that the Lambb case is able
to scale up to 1024 cores, we carried out experiments on 512
and 1024 cores (resp. 16 and 32 nodes) on Blue Waters.

Figure 4a shows the results obtained on 512 cores. For these
experiments we carried out several versions of the Lambb

case while varying the load imbalance which makes sense
scientifically for ChaNGa. On the x-axis, this imbalance is
measured by the percentage of active particles (an active parti-
cle generates CPU load). As for the experiments on PlaFRIM,
we are able at worst to equalize the performances obtained
with the best solution. Except compared to GreedyLB, the
more imbalance the better performance for our load balancing
algorithm. Another remark is that the gains obtained by
RefineLLB decrease as the the imbalance increases.

Figure 4b presents the execution time of the Lambb case
on 1024 cores. In this use case, TREEMATCHLB outperforms
GreedyLB by 17%. Besides, it also has to be noted that the
solution is computed considering eight chares per core, that
is to say 8192 chares. This result shows the scalability of our
algorithm and the possibility to adapt it to significant cases
for coarse-grain paradigms.

B. Ondes3D

We also did run Ondes3D, a simulator of three-dimen-
sional seismical wave propagation. This application has been
ported on top of AMPI [29] in order to exploit the Charm++
features [30]. As a use case, we worked on a simulation
based on the Mw6.6 2007 Niigata Chuetsu-Oki earthquake
(Japan) [31]. The experiments on this real application were
carried out on the PIaFRIM cluster.

In Fig 5, we compare TREEMATCHLB with the standard
Charm++ load balancers GreedyLB and RefineLB using 128
cores. The results show that these load balancers perform very
poorly compared to our solution. Though in some cases, an
execution without load-balancing step is comparable to a one
using TREEMATCHLB, we see that our approach is never
outperformed and that its gain increases with the number of
chares per core. Moreover, compared to previous results we see
that the gain has increased with the size of the target platform.

Ondes3D - PlaFRIM - 128 cores

3000

NolLB KXX]
TreeMatchLB ~
2500 | RefinelLB mm— 4
GreedylB <3
2000 i i

1500 i

1000 i

SR

8 16
Chares by core

Execution time (in seconds)

Fig. 5: Ondes3D walltime on PlaFRIM when varying the
number of chares per cores. 2, 4 and 8 chares/core: 16M cells.
16 chares/core: 64M cells

C. CommBench

The third test application, called CommBench, emulates a
large amount of communication between chares. This bench-
mark is designed as follows: each chare sends a large chunk of
data to two chares chosen randomly and the data size is het-
erogeneous. These communications are particularly irregular.
This benchmark was tried out on 8192, 16384 and 32768 cores
(resp. (256, 512 and 1024 XE6 nodes) on the Blue Waters
platform.

Figure 6 shows the results obtained with this benchmark
by using our load balancing algorithm TREEMATCHLB.
The plotted time measures correspond to the mean of ten
executions. In order to show the algorithm scalability, we
executed the application up to 32768 cores and 32 chares per
core. It has to be noted that the standard native Charm++
load balancers (e.g. GreedyLB or RefineLB) did not work
at this scale. This is why they are missing on the results.
We compared the execution with TREEMATCHLB to the one
without load balancing. We can notice that the execution time
is significantly improved while applying the TREEMATCHLB
algorithm. On the largest case, we see an improvement of
16.6%. The second remark is that our algorithm is able to
scale for an important number of cores and a large amount
of computing objects. On 32768 cores, we are able to load
balance more than one million chares. This is due to the
hierarchy and the distribution of TREEMATCHLB. Adapted
to a larger-grain paradigm, our algorithm should be able to
deal with a substential number of tasks on very large-scale
platforms.

D. Statistical comparison of the different strategies

Based on the above results, it appears that TREEMATCHLB
is in general the best strategy but that sometimes an other strat-
egy provides similar performance. However, the competitive
strategy varies depending on different parameters (Network
topology, level of imbalance, problem size, etc.). An inter-
esting question is therefore: is TREEMATCHLB statistically
better than the other load balancers? To have a statistical

Execution Wall time
32 chares per cores - 1MB message size

6000 T
5000 |-_TreeMatchLB /}-

4000 : A

3000 - A

2000 4

Average wall time (s)

1000

0 |
8192 16384
Number of cores

32768

Fig. 6: Average execution time of CommBench according
to the number of cores with 32 chares per core and 1 MB
per message. Carried out on XE6 nodes of the Blue Waters
platform.

Statistical comparison of load balancers

TreeMatch LB ‘ ‘ 715.97s/1.45 ‘ ‘ 343.41s/1.47 ‘ ‘ 636.30s/1.86 ‘ ‘ 269.77s/1.18 ‘ ‘ 453.33s/1.34

‘ [80's, 1151 5]

‘ No LB ‘ ‘ -372.55s/1.01 ‘ ‘ -79.67s/1.28 ‘ ‘ -994.86 s /0.62 ‘ ‘ -896.04 s/0.68

‘ [102 s, 585 s]

‘ [-956 s, 211 5]

‘ Refine LB ‘ ‘ 292.88s/1.27 ‘ ‘ 183.50s/1.15 ‘ ‘ 326.69s/1.28

‘ [164 s, 1046 s]

‘ [-821's, 662 5]

‘ [23s, 563 5]

‘ Greedy LB ‘ ‘ 154.89s/1.08 ‘ ‘ 292.40s/1.18

‘ [57 s, 483 5] [57 s, 310 s]

‘[71415 s, -573 5]

‘ [-59's, 369]

‘ MultistepLB H 118.14s/1.09

‘ [271's, 636 5]

‘[71347 s, -445 5]

[106 s, 547 s]

‘ [39's, 546 3]

‘ [19s, 294 5]

‘ Orb3dLB

Fig. 7: Statistical comparison of TreeMatchLB with standard
load balancers. Upper right panel: mean of the difference of
the run duration. Lower left panel 95% confidence interval of
the mean using the paired Student’s t-test.

significance, of these experiments we measure, in addition
of 5 lambb cases the performance of other use-cases: 4
different ChaNGa dwf> simulations and 8 Ondes3D runs (these
later runs are excluded when we compare Multistep LB or
Orb3dLB). All these runs have been chosen such that the
amount of communication exchanged during execution is very
high.

Results are displayed in Figure 7. The figure is read as
follows. On the diagonal (in shaded boxes), we have the
different load-balancing strategies that we compare. On the
upper right, each box is the mean of the difference of the
runtime with the strategy on the row and the strategy on the
column. For instance, we see that, runs using TreeMatchLB
are, on average, 343.51s faster than the runs using RefineLB.
On the lower left panel is the 95% confidence interval of
the corresponding mean for the strategy on the row and
the strategy on the column using the paired Student’s t-test
(see [22] chap. 13 p. 209). For instance, for TREEMATCHLB
vs. RefineLB, the interval is [102s, 585s]. The interpretation

Sdwf demonstrates how disk galaxies can form in a cosmological context.

of the interval is the following. If the interval is positive there
is a 95% probability that strategy on the row outperforms the
strategy on the line. If the interval is negative then the strategy
on the column outperforms the strategy on the row with
probability 95%. Otherwise (the interval contains negative and
positive values), we cannot conclude on which strategy is the
best with 95% confidence.

Here, we see that TREEMATCHLB outperforms all the
compared strategies. This backup the intuition that even if
in some cases other strategies may perform comparably with
TREEMATCHLB, on the average TreeMatchLB is the best
choice for the type of use-case we are dealing with (i.e. highly
communicating simulations). If we compare the other strate-
gies (NoLB, RefineL B, GreedyLB, etc.) between them we see
there that RefineLLB is better than GreedyLB, MultiStepL.B and
Orb3dLB. We also see no statistical difference with NoLB
and the 4 other ones. However if we reduce the confidence
interval to 80%, the load balancers are almost totally ordered:
TREEMATCHLB > RefineLB > MultistepLB > Orb3dLB >
GreedyLB ~ NoLB.

E. Sensitivity to initial placement

The initial placement of the processing entities (here the
chares) on cores actually impacts the application execution.
An example is given on Figure 8§ where we ran experiments
on the eight cores of one PlaFRIM node. The application is
balanced in terms of load: only communications impact the
execution time. In this Figure, No LB Round-robin corresponds
to an execution without a load-balancing algorithm where the
groups of chares are affected on cores by applying the physical
identity: group O of n chares on the physical core number 0,
group 1 of n chares on the physical core number 1, and so
on. On the contrary, No LB Packed assigns groups of chares
by following the logical identity: group O of n chares on
logical core number 0, group 1 of n chares on logical core
number 1, and so on. On the PlaFRIM platform where the
logical numbering differs from the physical one, this initial
placement is decisive®. Therefore, the user has to know the
characteristics of the underlying architecture to assign groups
of chares optimally: we have a difference of up to 30%
between the two cases. Thanks to TREEMATCHLB, we are
able to be oblivious to this initial placement. We computed
an average of TREEMATCHLB runtime starting with the two
initial placements described earlier. This result is depicted on
Figure 8 with the orange line. This graph shows that regardless
of the initial placement, TREEMATCHLB is able to move the
chares to converge to an optimal placement.

VI. CONCLUSION

Being able to dynamically balance the load of applications
is necessary in the context of high-performance computation
due to the hierarchical nature of modern architectures and
the cost of communication and the irregular nature of many

%Indeed, the cores of the INTEL XEON NEHALEM included in a PlaFRIM
node present this physical numbering scheme: 0,2,4,6,1,3,5,7

Execution time versus chares by core
200

180
160

T

No LB (Round Robin) s
No LB (Packed)
TreeMatchLB (RR + Packed)/2

140 -
120
100 |- v
80 | / .
60 - B
a0 | .

20 1

0 ! ! !
1 2 4 8 16

Number of chares by core

Average time for each iteration (in ms)

Fig. 8: Evaluation of the initial placement at launch time for
a balanced application whose optimal placement is known.

applications. In this paper, we propose a distributed and hier-
archical load-balancer. Our approach is a two-level one. At the
network level, we rely on LibTopoMap heuristics for dealing
with arbitrary network topologies. For the fine chare-to-core
mapping, we use TREEMATCH. Nonetheless, we showed that
in general, a global load-balancing step is mandatory and
we provide such step with a refinement algorithm. At the
end, our algorithm optimizes both the communication and the
computation costs.

We carried out many experiments on different architectures
(P1aFRIM with an Infiniband fat-tree network and Blue Wa-
ters with a Gemeni 3D torus) and various applications and
benchmarks. Results show that our topology-aware approach
is in general the best strategy and, in the worst case, on par
with the best solution. Statistically, our solution is the best on
average. Moreover, thanks to its decentralized approach it is
able to scale up to one million of chares while standard load
balancers do not work for the largest setting we tested. An
other interesting feature of our approach is that it relieves the
user from the burden of taking into account the core numbering
when launching its application.

In future work, we could improve the network awareness.
First, some links are not considered. Concerning a 3d torus,
two ways are possible in the same axis to link two nodes
while we only consider one. Secondly, it could be interesting
to evaluate the routing rules for each routers. This would
require to manage the way the routing is performed. Another
prospect could be to work on load-balancing time and more
particularly to let TREEMATCHLB chose the two levels of
hierarchy to work on. For now, our solution first work at the
network level then on the cores level. Should the number of
cores per node be very substantial, an interesting feature could
be to automatically chose to compute a placement of chares
on groups of cores sharing the same cache. This improvement
should increase the scalability of this hierarchical approach.

ACKNOWLEDGMENT

This research is partially supported by the NCSA-Inria-
ANL-BSC-JSC-Riken Joint-Laboratory on Extreme Scale
Computing (JLESC) in which we had allocated hours to

the

Blue Waters machine. We would like to thank Torsten

Hoefler for providing us with the LibTopoMap code. The
PIaFRIM experimental testbed, is being developed under the
Inria PlaFRIM development action with support from LABRI
and IMB and other entities: Conseil Régional d’Aquitaine,
FeDER, Université de Bordeaux and CNRS (see https://
plafrim.bordeaux.inria.fr). Part of this work has also been
funded by the ANR MOEBUS project (ANR-13-INFR-0001).

We

would like to thanks Fabrice Dupros et Rafael Keller

Tesser for providing us with the Ondes3D code.

[1]

[2

—

[3]

[4]

[5]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

REFERENCES

E. Jeannot, G. Mercier, and F. Tessier, “Process Placement in Multicore
Clusters: Algorithmic Issues and Practical Techniques,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 4, pp. 993-1002, 2014. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.104
E. Jeannot and G. Mercier, “Near-Optimal Placement of MPI processes
on Hierarchical NUMA Architectures,” in Euro-Par 2010 - Parallel
Processing, 16th International Euro-Par Conference, ser. Lecture Notes
on Computer Science, Pasqua D’ Ambra, Mario Rosario Guarracino, and
Domenico Talia, Eds., vol. 6272. Ischia Italie: Springer, SEPT 2010,
pp. 199-210.

G. Mercier and E. Jeannot, “Improving MPI Applications Performance
on Multicore Clusters with Rank Reordering,” in EuroMPI, ser. Lecture
Notes in Computer Science, vol. 6960. Santorini, Greece: Springer,
Sep. 2011, pp. 39-49.

L. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA) 93.
ACM Press, September 1993, pp. 91-108.

L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with
Message-Driven Objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175-213.

L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime
Strategies via Migratable Objects,” in Advanced Computational Infras-
tructures for Parallel and Distributed Applications, M. Parashar, Ed.
Wiley-Interscience, 2009, pp. 265-282.

L. V. Kale, “Programming Models at Exascale: Adaptive Runtime
Systems, Incomplete Simple Languages, and Interoperability,” The Inter-
national Journal of High Performance Computing Applications, vol. 23,
no. 4, pp. 344-346, October 2009.

L. Kale, A. Arya, N. Jain, A. Langer, J. Lifflander, H. Menon, X. Ni,
Y. Sun, E. Totoni, R. Venkataraman, and L. Wesolowski, “Migratable ob-
jects + active messages + adaptive runtime = productivity + performance
a submission to 2012 HPC class II challenge,” Parallel Programming
Laboratory, Tech. Rep. 12-47, November 2012.

L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley, J. Lifflander,
P. Miller, Y. Sun, R. Venkataraman, L. Wesolowski, and G. Zheng,
“Charm++ for productivity and performance: A submission to the 2011
HPC class II challenge,” Parallel Programming Laboratory, Tech. Rep.
11-49, November 2011.

R. K. Brunner and L. V. Kalé, “Handling application-induced load
imbalance using parallel objects,” in Parallel and Distributed Computing
for Symbolic and Irregular Applications. World Scientific Publishing,
2000, pp. 167-181.

G. Zheng, “Achieving high performance on extremely large parallel
machines: performance prediction and load balancing,” Ph.D. disserta-
tion, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

E. R. Rodrigues, P. O. A. Navaux, J. Panetta, A. Fazenda, C. L.
Mendes, and L. V. Kale, “A Comparative Analysis of Load Balancing
Algorithms Applied to a Weather Forecast Model,” in Proceedings of
22nd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Itaipava, Brazil, 2010.

A. Bhatele, “Topology Aware Task Mapping,” in Encyclopedia of
Parallel Computing (to appear), D. Padua, Ed. Springer Verlag, 2011.
A. Bhatelé and L. V. Kalé, “Benefits of Topology Aware Mapping
for Mesh Interconnects,” Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), vol. 18, no. 4, pp. 549-566, 2008.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

G. Zheng, E. Meneses, A. Bhatele, and L. V. Kale, “Hierarchical Load
Balancing for Charm++ Applications on Large Supercomputers,” in Pro-
ceedings of the Third International Workshop on Parallel Programming
Models and Systems Software for High-End Computing (P2S52), San
Diego, California, USA, September 2010.

G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale, “Periodic Hierarchical
Load Balancing for Large Supercomputers,” International Journal of
High Performance Computing Applications (IJHPCA), March 2011.

H. Menon and L. Kalé, “A distributed dynamic load balancer for iterative
applications,” in Proceedings of SCI3: International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’13. New York, NY, USA: ACM, 2013, pp. 15:1-15:11. [Online].
Available: http://doi.acm.org/10.1145/2503210.2503284

L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A. Bhatele, P. O. Navaux,
F. Broquedis, J.-F. Méhaut, and L. V. Kale, “A Hierarchical Approach for
Load Balancing on Parallel Multi-core Systems,” in Parallel Processing
(ICPP), 2012 41st International Conference on. 1EEE, 2012, pp. 118—
127.

L. L. Pilla, P. O. Navaux, C. P. Ribeiro, P. Coucheney, F. Broquedis,
B. Gaujal, and J.-F. Mehaut, “Asymptotically optimal load balancing
for hierarchical multi-core systems,” in Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on. IEEE, 2012,
pp. 236-243.

E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and G. Zheng,
“Communication and Topology-aware Load Balancing in Charm++
with TreeMatch,” in IEEE Cluster 2013. Indianapolis, Etats-Unis:
IEEE, Sep. 2013. [Online]. Available: http://hal.inria.fr/hal-00851148
F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “Hwloc: a Generic
Framework for Managing Hardware Affinities in HPC Applications,”
in Proceedings of the 18th Euromicro International Conference on
Farallel, Distributed and Network-Based Processing (PDP2010). Pisa,
Italia: IEEE Computer Society Press, Feb. 2010. [Online]. Available:
http://hal.inria.fr/inria-00429889

R. K. Jain, “The art of computer systems performance analysis,” 1991.
T. Hoefler and M. Snir, “Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures,” in ICS, 2011, pp. 75-84.

G. Karypis and V. Kumar, “METIS - Unstructured Graph Partitioning
and Sparse Matrix Ordering System, Version 2.0,” Tech. Rep., 1995.
P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn, “Mas-
sively parallel cosmological simulations with ChaNGa,” in Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2008, 2008.

P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R.
Quinn, “Scaling hierarchical n-body simulations on gpu clusters,” in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1-11.
[Online]. Available: http://dx.doi.org/10.1109/SC.2010.49

H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and
F. Governato, “Adaptive techniques for clustered n-body cosmological
simulations,” Computational Astrophysics and Cosmology, vol. 2,
no. 1, pp. 1-16, 2015. [Online]. Available: http://dx.doi.org/10.1186/
s40668-015-0007-9

H. Menon, L. Wesolowski, G. Zheng, P. Jetley, L. Kale, T. Quinn, and
F. Governato, “Adaptive techniques for clustered N-body cosmological
simulations,” Computational Astrophysics and Cosmology, vol. 2, p. 1,
Mar. 2015.

C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPL,” in Proceedings
of the 16th International Workshop on Languages and Compilers for
Parallel Computing (LCPC 2003), LNCS 2958, College Station, Texas,
October 2003, pp. 306-322.

R. Keller Tesser, L. Pilla, F. Dupros, P. Navaux, J.-F. Mehaut, and
C. Mendes, “Improving the performance of seismic wave simulations
with dynamic load balancing,” in Proceedings of 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing (PDP 2014), Torino, Italy, 2014, accepted. [Online].
Available: https://hal.inria.fr/hal-00953133

H. Aochi, A. Ducellier, F. Dupros, M. Delatre, T. Ulrich, F. de Martin,
and M. Yoshimi, “Finite difference simulations of seismic wave
propagation for the 2007 mw 6.6 niigata-ken chuetsu-oki earthquake:
Validity of models and reliable input ground motion in the near-field,”
Pure and Applied Geophysics, vol. 170, no. 1-2, pp. 43-64, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s00024-011-0429-5

