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Abstract—Emerging high performance computing (HPC)
systems are expected to be deployed with an unprecedented
level of complexity due to a deep system memory and storage
hierarchy. Efficient and scalable methods of data manage-
ment and movement through this hierarchy is critical for
scientific applications using exascale systems. Moving toward
new paradigms for scalable I/O in the extreme-scale era, we
introduce novel object-centric data abstractions and storage
mechanisms that take advantage of the deep storage hierarchy,
named Proactive Data Containers (PDC). In this paper, we
formulate object-centric PDCs and their mappings in different
levels of the storage hierarchy. PDC adopts a client-server
architecture with a set of servers managing data movement
across storage layers.

To demonstrate the effectiveness of the proposed PDC
system, we have measured performance of benchmarks and
I/0 kernels from scientific simulation and analysis applications
using PDC programming interface, and compared the results
with existing highly tuned I/O libraries. Using asynchronous
I/0 along with data and metadata optimizations, PDC demon-
strates up to 23x speedup over HDFS5 and PLFS in writing
and reading data from a plasma physics simulation. PDC
achieves comparable performance with HDF5 and PLFS in
reading and writing data of a single timestep at small scale, and
outperforms them at a scale of larger than ten thousand cores.
In contrast to existing storage systems, PDC offers user-space
data management with the flexibility to allocate the number of
PDC servers depending on the workload.

I. INTRODUCTION

Transformative changes in scientific data management
strategies are needed to handle the complexity of multi-
layer storage hierarchy in exascale architectures and the
imminent deluge of scientific data and metadata. As HPC
is rapidly moving towards exascale, new architectures are
equipped with multiple layers of storage, such as storage
class memory or NVRAM on compute nodes, SSD-based
burst buffers shared by compute nodes, disk, or tape-based
storage systems. HPC systems being installed at several De-
partment of Energy facilities are already designed with these
storage layers. For instance, the current flagship system at
the National Energy Research Scientific Computing Center
(NERSC), called Cori, has an SSD-based burst buffer and
a disk-based Lustre parallel file system. On the other hand,
scientific data is continuously growing. For example, plasma
physics simulations studying solar weather already produce
hundreds of terabytes of data [1]. Similarly, experimental
and observational facilities, such as Linac Coherent Light

Source (LCLS), are projected to generate several petabytes
of data. In addition, scientific data also comes with rich
metadata, which needs to be managed in a scalable manner
to allow efficient information retrieval. In order to tackle
these issues, a transformative change in managing scientific
data on HPC systems is critical.

Traditional parallel file systems, such as Lustre [2] and
GPFS [3], use striping for placing data over a multitude of
storage servers to facilitate concurrent data access. However,
their adherence to POSIX constraints limits their scalability.
They are also faced with serious challenges in handling
the upcoming architectural changes as well as the massive
amount of data. For instance, parallel file systems are
typically unaware of the multi-level storage hierarchy and
need external middleware to glue various layers together.
Another critical deficiency is metadata management, where
files are associated with limited prescriptive metadata and
understanding the metadata is left entirely to the user.

The desire to overcome the limitations of current parallel
file systems has spawned several efforts which explore
object-based storage. For instance, RADOS [4], Amazon S3
[5], and OpenStack Swift [6] have been developed for man-
aging data as objects and storing them in a flat namespace.
While these technologies work well in distributed cloud
environments, where the whole objects are accessed each
time, HPC applications have unique requirements such as
accessing the data in small subsets. MarFS [7] attempts
to bring a cloud-style file system to HPC environment
with a near-POSIX storage layer. Limitations of these
systems include the lack of asynchronous and transparent
data movement, lack of support for extensible metadata
describing information in data, and a programming interface
for scalable object management. DAOS [8] is an object-
based file system solution currently under development for, it
provides asynchronous data movement and manages objects
in a hierarchical storage with multiple layers.

To address shortcomings of existing parallel file systems
and object storage systems, i.e., asynchronous data move-
ment, extensible user-defined data, and scalable metadata
management, and to include an improved object-centric
data management interface, we introduce the Proactive Data
Containers (PDC) system in this paper. In the PDC system,
objects are first-class citizens, where applications can map
their data structures, such as multi-dimensional arrays, as



objects. The PDC system services run in user-space, co-
located with applications in a scalable manner, and provide
asynchronous data movement across multiple layers of stor-
age hierarchy.

PDC manages metadata and data objects separately. Meta-
data contains predefined information about a data object,
such as name, ownership, timestamps, etc., as well as
unlimited number of user-defined tags as rich metadata.
We provide a programming interface for creating, updat-
ing, and querying metadata to find target data objects. A
challenge that many object-centric file systems face is a
performance bottleneck in accessing the metadata servers
to locate the data files. Moreover, each layer of storage has
a different file namespace. To overcome these challenges,
we dedicate a small fraction of compute resources in user-
space for running the metadata services separately from
data management services. Because computing resources are
generally available in abundance in HPC systems, using
a fraction of these resources for I/O services has minor
impact on applications. For example, in a compute node
containing 32 CPU cores, we use 1 core to run PDC server.
All servers together manage an integrated namespace, with
objects stored in one or more storage layers.

To manage data objects, we enabled PDC with asyn-
chronous I/O and have adopted various optimizations. For
example, we use a node-local data aggregation approach for
avoiding a large number of small data movement requests.
PDC also dynamically selects storage devices in the hierar-
chy for storing data. Applications can define regions of data
objects and access individual regions without moving the
entire object. Overall, the novel contributions of this paper
are the following:

« An object-centric data model and programming inter-

face for managing data objects on HPC systems.

o A user-space, distributed service for asynchronous and
transparent data movement across a storage hierarchy.

« Integration and optimization of a scalable, distributed,
and in-memory metadata management service into
PDC.

o Storage layer-aware optimizations such as node-local
data aggregation and automatic Lustre tuning to reduce
data access latency.

We have evaluated the PDC system production super-
computing systems located at the National Energy Research
Scientific Computing Center (NERSC) and at the Argonne
Leadership Computing Facility (ALCF). We have measured
performance of I/O kernels extracted from real-world sci-
entific applications. We show that using PDC achieves a
multi-fold speed up compared to highly tuned existing I/O
libraries such as HDF5 and PLFS.

The remainder of the paper is organized as follows: We
introduce the Proactive Data Containers (PDC) system in
Section II. In Section III, we present our experimental set-
up used in evaluating PDC and in Section IV, we analyze

the scaling behavior of PDC and performance of a plasma
physics simulation I/O kernel. We discuss literature relevant
to PDC in Section V and conclude the paper in Section VI.

II. PROACTIVE DATA CONTAINERS SYSTEM

Current I/0O standards, such as POSIX-IO and MPI-IO,
present fundamental challenges in the areas of semantic-
based data movement optimizations, asynchronous opera-
tions, scalable metadata operations, and scalable support for
consistent distributed operations. Object-centric mechanisms
have been proposed but the existing approaches have not
yet been able to express data structures that can transcend
through all the layers of the memory and storage hierarchy.

We introduce Proactive Data Containers (PDCs), whose
principal goal is to provide users with an efficient and
scalable scientific data management system for the upcoming
exascale storage systems. PDC starts with moving away
from the existing file-oriented approaches, and explores
novel, object-centric data management approaches. A PDC
is a container of objects, where the objects are managed by
PDC services and are placed in any level of the storage
hierarchy (i.e., NVRAM, disk, tape, etc.) as shown in
Figure 1. It provides efficient data movement operations
in critical areas of the exascale data management software
stack. With the PDC system managing data objects and their
placement in the storage hierarchy transparently, users are
relieved from the burden of managing files on their own.
Data transformations according to future use of the data or
analysis in the data path, if enabled, may take place ‘pro-
actively’ while the data is in a container. In this paper, we
focus mainly on the data I/O services, without the emphasis
on proactive analysis.

Our implementation of PDC adopts a client-server ap-
proach to monitor and manage I/O operations on objects.

Application Memory Locus

NVRAM Locus

Adapter+Mapping+ Transformation

[S—
Legacy File
Legacy File

Proactive Data Containers
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Figure 1. Proactive Data Containers can reside at any level of the storage
hierarchy, and access data as objects or in legacy files. PDC and objects
within them can be mapped to one another temporarily or permanently, and
have transformations occur during I/O.
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With this approach, PDC servers are able to asynchronously
handle the I/O operations in the background while a client
application continues its computation, thus exploiting the
compute and storage resource strengths of each location.
PDC APIs give applications the ability to create containers
and place objects at various memory/storage locations along
with defining object mappings and data transformations.

A. Object-centric Programming Interface

The main data constructs of PDC include Containers,
Objects, Regions, and Properties. A Container is a col-
lection of objects that share similar attributes defined by a
user (e.g., all data variables produced by a simulation or an
experiment). An Object is a generic term to describe byte
streams in an abstract manner. In PDC, data objects can
be arrays or key-value pairs. PDC also uses the concept of
spatial Regions that address the common approach in most
scientific applications that partition the problem domain into
smaller sub-regions. Each region contains the actual data
as well as metadata associated with it. A region is the
basic unit for expressing data movement operations in PDC.
These three entities also include Properties, or metadata,
which contain the descriptive information set by the user, or

// Create a PDC and set container
pdc_id = PDC_init(”PDC”);
cont_prop = PDCprop_create (CONT_CREATE, pdc_id) ;
cont_id = PDCcont_create (”VPIC” ,cont_prop);

properties .

// Create and set object properties

obj_prop = PDCprop_create (OBJ_CREATE, pdc_id);

PDCprop_set_obj_dims (obj_prop ,ndim, dims) ;

PDCprop_set_obj_type (obj_prop ,PDC_FLOAT) ;

// Set tags and map data buffer

PDCprop_set_obj_tags(obj_prop,
=8,ts=1");

PDCprop_set_obj_buf(obj_prop,&my_data[0]) ;

"nparticles=8M, nvar

// Create an object
obj_id = PDCobj_create(cont_id ,obj_name, obj_prop);

// Write the object to storage
PDC_region_info_t my_region;
my_region.ndim ndim ;
my_region. offset myoffset;
my_region.size mysize;
PDC_Client_write (obj_id ,my_region);

/! Query object with specific properties
PDC_query (obj_name , query_prop ,&n_obj,&obj_ids);

/!l Read the data of objects
for (i=0; i<n_obj; i++)
PDC_Client_read (obj_ids[i],my_region);

returned from query

// Close object and PDC
PDCobj_close(obj_id)
PDC_close (pdc_id)

Figure 2. An example of the current PDC API for creating, writing, and
querying objects.

generated automatically by PDC.

The PDC system allows an application to describe its
memory buffers in an object-oriented and self-describing
way. Typical representations include structures of arrays
(SOA) and arrays of structures (AOS). In Figure 2, we
show an example of using the PDC API for creating a
container (line 4), creating an object (line 15), and setting
their corresponding metadata (line 3 and 7 to 12). Line 25
to 29 show an example of querying an object and reading
the contents of a region in an object. It also includes the I/O
and metadata query routines.

B. User-space Client-server Architecture

PDC is implemented as a user-space framework using a
client-server architecture, as shown in Figure 3. PDC servers
are responsible for both metadata and data management
operations. There are two modes that a user can run the PDC
servers in. In shared mode the PDC server processes are
co-located on the compute nodes alongside an application’s
processes and share the CPU and the memory resources. In
dedicated mode, the PDC server processes run on dedicated
nodes that are separate from the nodes allocated to run an
application. We focus on the former to allow PDC to utilize
shared memory for more efficient data movement between
node-local clients and servers. A user can start any number
of PDC servers suitable for their workload. Typically we run
one PDC server using one core per compute node, while the
remaining cores on the node are used to run an application.
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Figure 3. PDC client-server architecture overview. In this figure we show
that each compute node runs 1 PDC server, and m client application
processes, which is a typical PDC configuration. The application issues
data related requests through the client API. Both the clients and the server
manage their own shared memory segments for fast inter-process data
transfer within the same node. Additionally, only the servers interact with
the storage system for data movement, and the clients access data through
its node-local server. For metadata related operations, as the metadata for
a specific object may be located on another server process, the clients may
need to contact remote servers to access it.



PDC clients provide communication between an appli-
cation and the PDC servers. The client is implemented as
a standard library and provides a set of data and meta-
data operation APIs. The client-server communication is
implemented using Mercury [9], which implements Remote
Procedure Calls (RPCs) optimized for HPC systems. In
our experiments, we have configured the Mercury library
to use the BMI plug-in (the communication component of
OrangeFS [10]) with the TCP protocol. This can be replaced
with faster protocols that can make use of RDMA, such as
OFI libfabric over Cray GNI.

C. Namespace Management

PDC separates data and metadata objects, and allows
applications to locate the data objects by accessing metadata.
Both data and metadata objects are managed in a flat
namespace, as opposed to the hierarchical directory structure
used by existing file systems. The traditional hierarchical
namespace requires that users keep a record (cache) of the
long directory path for performance reasons to access files.
Locating a file for the first time requires a traversal of
the directory tree from the root. On the other hand, a flat
namespace has all metadata objects on the same level. Each
metadata object can be located directly and independently.

We have integrated the Scalable Object-centric Metadata
(SoMeta) framework [11] into the PDC system for man-
aging metadata objects. SoMeta offers scalable metadata
operations such as creating, querying, and updating metadata
objects. It provides a tagging approach to enable a logical or-
ganization (such as grouping by directory) for all metadata,
and provides efficient querying that allows users to locate
a specific metadata object or in finding related metadata
objects with high efficiency and scalability. More details of
SoMeta implementation are available in [11].

D. Asynchronous 1/0

Asynchronous I/O provides the ability to overlap com-
putation with I/O operations. An application can issue an
I/O request and perform other computations until it gets
asynchronously notified without waiting for its completion.
For scientific applications that involve large amounts of
I/O, overlapping computation and I/O can offer significant
improvement of throughput via read-ahead (prefetch) or
write-behind operations. In contrast, with synchronous I/O,
an application is blocked awaiting the completion of 1/O
operations.

We enable asynchronous I/O with the PDC’s client-server
architecture to allow all I/O operations to be asynchronous
by default. If synchronous I/O is needed, it is implemented
as asynchronous I/O followed immediately with a status
check and wait. In Figure 4, we illustrate the procedures
to perform asynchronous read and write operations. The
application issues an I/O request that is sent to the node-local
PDC server. In case of a write request, the client creates
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Figure 4. Flow of PDC 1/O operation — R1: Query object and get metadata;
R2: Init and send read request, proceed to next task; R3: Get storage
metadata; R4: Read from storage devices; R5: Get server’s shared memory
information and copy data to user’s buffer; W1: Create object and regions;
W2: Init and send write requests, proceed to next task; W3: Open shared
memory from client; W4: Write to storage devices from clients’ shared
memory; W5: Update storage metadata; W6: Confirm data is written.

a shared memory segment, copies the data that are to be
written to storage, and then sends the related information
along with the write request to the server. It can then reuse
the original data’s buffer and proceed to its next task without
waiting for the I/O to finish. Upon receiving the request, the
server enqueues the request to its I/O queue and responds
with a confirmation message to the client immediately. When
the client needs to confirm that the previously sent I/O
request is completed by the server, it can send another
request with the identifying information to the server. The
server responds with the status of the I/O request, which
can be “finished”, “in progress”, or “failed”. In case of read
requests, the server creates a shared memory segment, reads
the requested data into it and sends the address to the client.
The client uses the address to open the shared memory and
copies the data to the user-specified buffer.

E. Storage Hierarchy-Aware Data Management

Scalable data movement involves efficient movement of
data concurrently from a set of ‘M’ clients to a set of ‘N’
PDC servers and eventually to persistent storage systems.
It takes into account the underlying system interconnect
topology, storage system characteristics, and the application
communication patterns. Data movement in PDCs can be ini-
tiated by the application explicitly accessing objects located
on the various storage layers, or by using object mapping
and projection operations. Users can inform PDC of which
storage devices are available through the use of environment
variables (e.g., the location of a burst buffer that a user has
access to). PDC will then use these storage resources at
runtime and pro-actively moves data as required.



PDC is aware of the available deep memory hierarchy
through the library configuration and/or runtime environ-
ment variable set up. Many HPC systems, such as the Cori
supercomputer at NERSC, have burst buffers that are SSD-
based storage devices and sit between main memory and
hard disk-based storage systems. They provide high through-
put /O alternatives for short-term “out-of-core” storage.

PDC provides two ways to move data across the memory
hierarchy: the first is through automatic data movement;
and the second is through user-directed data movement.
For automatic movement, the PDC system initiates data
transfers based on the knowledge accumulated by the server,
including the characteristics of different storage devices,
storage capacity, the size of the data, etc, to achieve high
throughput. Another option is designed for advanced users
with storage optimization knowledge. In this case, PDC
allows users to set metadata hints to tag data regions with
their desired storage location.

FE. Optimizations for scalability

We have designed various optimizations to improve per-
formance of data and metadata management in the PDC
system.

1) Data management optimizations: Node-local data
aggregation. PDC servers accumulate the I/O requests from
the node-local clients and perform them consecutively at a
later time. In our current implementation, data is moved from
clients to the server (and vice versa) co-located on the same
node using shared memory. For write operations, each server
writes to an individual file and data from different node-
local clients are written contiguously, in append only log-
structured fashion. This approach reduces the potential file
system metadata overhead with file-per-process mode and
we have observed performance improvement over the single-
shared-file approach at large scale. When reading data, PDC
servers first retrieve the corresponding storage metadata to
obtain the file location and offset information. The server
then reorders read requests from the clients so that the
actual reads to the storage devices can be performed as
contiguous as possible. This strategy achieves significantly
better performance than non-contiguous random accesses.

Automatic Lustre Tuning. The Lustre file system is
widely used in HPC centers and provides high performance
I/O services for applications to access massive amount of
data. It is composed of a collection of I/O servers and disks
called Object Storage Servers (OSSs) and Object Storage
Targets (OSTs). File striping is a well known approach
to increase I/O performance by writing or reading to/from
multiple OSTs simultaneously, thus increasing the available
I/O bandwidth to an application. Selecting the best striping
strategy however, can be complicated for users that do not
have experience with I/O optimization. Striping a file over
too few OSTs will likely under-utilize the system’s available
bandwidth. Similarly, striping over too many will cause

unnecessary overhead and lead to a loss in performance.
Even for I/O experts, setting ideal Lustre stripe parameters
and matching them with the MPI-IO hints can be trouble-
some. At a minimum, it requires a lot of manual work and
subsequent application or data changes will require that these
parameters be adjusted accordingly.

PDC relieves users of such burden and hides the complex-
ity in storing data. As PDC takes full control of the actual
I/O operations, we enabled PDC to select the optimal Lustre
striping strategy dynamically based on the actual workload
at run time. Our key strategy for storing data on Lustre is
to use as many OSTs as possible for concurrent access, and
have each OST accessed by as few writers as possible to
reduce contention.

Assume Npgr is the total number of available OSTs,
Nw riter 1S the number of writers, and Rank is the server’s
MPI rank. We use the following equations for selecting the
Lustre stripe count, stripe size, and the stripe offset.

StripeCount = [ Nost/Nwriter | (D

1MB  if data size < 1GB
StripeSize = 1 data .51ze - 2)
16M B otherwise

OSTIndexr = (Rank x StripeCount)%Nost  (3)

2) Metadata management optimizations: In PDC, meta-
data objects are managed and distributed among the servers.
Metadata operations, such as create, update, and query can
be performed efficiently and in a scalable fashion, as de-
scribed in our previous work [11]. However, as PDC servers
are responsible for both metadata and data operations, it
is crucial to orchestrate the two types of operations and
minimize the overall overhead.

Based on our previous experiments, we have identified
two aspects for improving the performance of metadata man-
agement in PDC. The first one is with collective metadata
querying. As explained in previous sections, application pro-
cesses (PDC clients) access data through metadata queries
that retrieve or update the location of the corresponding data.
In the case when a large number of client processes operate
on a single object, they all need to get the metadata from
a single metadata server. Even with our millisecond level
communication overhead, when the number of concurrent
requests become very high, the cumulative overhead could
be non-negligible. To reduce this overhead, PDC aggregates
the requests from client processes on the same compute
node, and sends them to the target metadata server in bulk.
Once results are returned, the server will distribute the
corresponding data to the clients. With this optimization, the
number of concurrent requests were significantly reduced.

Another metadata optimization used in PDC is to re-
order metadata operations for a given sequence of data
and metadata requests. To maintain consistency of data and
metadata, PDC must keep an up-to-date records of all data it



manages (i.e., whenever there is a change with the data, the
corresponding metadata must be updated). However, in some
cases, the user may not need strict consistency but rather
eventual consistency in exchange for better performance.
One such scenario is when a scientific simulation is pro-
ducing multiple variables for a certain number of timesteps.
When data is being written, as each server sends its latest
storage metadata update to the metadata server for each
variable, the metadata server may also be performing 1/O
operations at the same time for another variable. As a result,
the metadata update is blocked and the server initiating the
metadata operations has to wait before proceeding with its
next task. To resolve this issue, we provide users with the
option to specify a relaxed consistency requirement. Before
starting the write operations, the user can provide a hint
through PDC APIs and inform the server regarding the
number of expected writes so that the server can postpone
the metadata update until all the writes are performed. This
user-controllable “lazy update” can significantly improve the
throughput and reduce the time spent on metadata updates.
In the future, we plan to remove this “hint” requirement with
further optimizations on the server side, and let the server
decide of the best time to perform such metadata updates.

III. EXPERIMENTAL SETUP

HPC Systems  Cori (NERSC), Cooley (Argonne)

Comparison  PDC, HDF5, and PLFS
Benchmarks
Workloads 15 e mels (VPIC-I0, BDCATS-IO)
Operations Write, read with single and multiple time steps.
P Strong and weak scaling
Main Memory
Storage SSD-based Burst Buffer

Hard disk drive (Lustre and GPFS)

We evaluated the performance of PDC with a series of
experimental configurations, as shown in Table III. We run
PDC systems on the Cori system at the National Energy
Research Scientific Computing Center (NERSC). Cori is a
Cray XC40 supercomputer with 1630 Intel Xeon “Haswell”
nodes, where each node consists of 32 cores and 128GB
memory. Its Lustre storage system is shared by all users and
has 248 OSTs, and the burst buffer resources are allocated
based on the specific request in the job submission script.
We ran one PDC server on each compute node in our
tests that share resources with user applications, that is,
the PDC server occupies one core on each compute node,
and the user’s application runs on the remaining 31 cores.
We also tested the VPIC-IO kernel on Cooley, an analysis
and visualization cluster at Argonne Laboratory Computing
Facility (ALCF). Cooley has 126 Intel Haswell E5-2620
nodes, each with 12 cores and 384GB of memory. The 27
PB of storage are managed with a GPFS file system.

We have used a set of benchmarks and I/O kernels
representative of scientific simulation and analysis codes.

We developed a write benchmark that creates a single
PDC object across all client processes with each process
generating data for a non-overlapping sub-region of data.
The read benchmark queries and then retrieves the metadata
generated by the write benchmark. Each MPI process then
issues requests to read a specific non-overlapping region of
the global object via the PDC interface.

We used the VPIC-IO kernel, which is extracted from
a plasma physics code called VPIC [12], which simulates
magnetic reconnection phenomenon in space weather. In this
kernel, each MPI process writes 8M (8 x 220) particles with
each particle having 8 variables. VPIC data structures use
1-D arrays to represent each variable. The total length of
each property array is equal to n x 8 x 229, where n is the
number of MPI processes. BD-CATS-IO kernel is extracted
from a parallel clustering algorithm, used for analyzing the
data produced by particle simulations, such as VPIC. In this
kernel, data related to the particles are read among all the
MPI processes in a load-balanced distribution. While these
kernels use random data, the I/O patterns exactly match
that of the simulation and analysis. The original kernels
use HDF5 for performing I/O and are highly tuned using
MPI-IO and Lustre optimizations [1], [13]. In this paper,
we have also implemented these kernels using PLFS and
PDC objects. For PDC, each 1-D array is mapped as a PDC
object, and each process works on a region of the object.
The region is a 1-D array of 8M particles.

For all the results presented below, we have measured
the elapsed time, which is the end-to-end time from the
first I/O operation until the last I/O operation finishes. For
PDC, the elapsed time includes the overhead of using PDC
to both maintain the metadata and move the data between
memory hierarchies. For both HDF5 and PLFS, it includes
the file open and close times, along with the time for moving
data from memory to a file system. For all the evaluations
presented in this paper, we ran the experiments at least three
times and reported numbers representing the best results.

IV. EVALUATION
A. Strong scaling

In the strong scaling tests, we have fixed the total amount
of data to be written as 512GB, and increased the number
of client application processes. The number of PDC servers
also increases with a fixed ratio to the number of clients
as mentioned previously. In Figure 5, we report the total
time taken for writing and reading a fixed amount of data
(512GB) to Lustre with different number of clients. We can
observe that PDC performs close to linear scalability, and the
overhead is only a small fraction of the total I/O time. At the
time of testing, the read performance was consistently worse
than the write performance on this HPC system. Despite that
slow read performance, PDC read operations scale linearly.
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Figure 5. PDC strong scaling performance for writing and reading 512G’ B
data on Lustre.

B. VPIC-10 kernel — Weak scaling writes

We ran the VPIC-IO kernel in two modes: single timestep
and multiple timesteps. It is typical for simulation codes to
run for a large number of timesteps to represent progression
of real world scenario. These simulations write data for a
timestep periodically. In the single timestep case in HDF5,
we have written data to a single file, similar to the behavior
of the original kernel. In the multi-timestep case of VPIC-
10, we have added a sleep time, representing computations
between writing data. When running VPIC-IO with different
number of timesteps, it is essentially a weak scaling test,
with 256 M B data written per client process.

Figure 6 compares the total write time to Lustre and
to the burst buffer as observed by the client application.
The breakdown of the actual I/O time as well as the
overhead are also shown. For HDF5 and PLFS, all processes
are writing/reading the same file(s) with 8 datasets. We
used HDF5 with MPI-IO and Lustre optimizations such as
avoiding file truncate and choosing optimal number of Lustre
OSTs as suggested in previous research [14]. While for
PDC, the number of resulting files on storage equals to the
number of PDC servers multiplied by the number of objects
(8). PDC outperforms PLES in all cases and the speedup
increases with the number of processes. When compared
with HDF5, PDC is advantageous when running at larger
scale due to server-side aggregation (e.g. PDC has a 1.4x
speedup over HDFS with 15872 processes). PDC shows a
more stable performance with relatively smaller performance
variance when the number of clients increases. On the other
hand, HDF5’s overhead increases significantly. Such results
demonstrates the better scalability of PDC.

Figure 7 compares the performance between HDFS and
PDC writing 5 timesteps data to Lustre and burst buffer on
Cori. With PDC’s support of asynchronous I/O, the client
application only observes the last write time (others overlap
with the computation time) plus PDC’s overhead (negligible
compared with the write time), as opposed to all 5-timestep’s
write time for HDF5 and PLFS. PDC achieves up to 5x
speedup over HDF5 and 23x over PLFS.

Figure 8 presents the results obtained with PDC and
HDF5 on the Cooley system using GPFS with a single
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timestep and 5 timesteps. On this platform, we notice an
increasing gap in terms of performance between the two
approaches. On 64 nodes (640 clients and 64 servers), the
PDC implementation performs more than 7x faster to store
data compared to HDF5 on a single timestep while this
factor reaches 35 with 5 timesteps.

C. BD-CATS-10 — Weak scaling reads

BD-CATS-IO is a read-intensive I/O kernel from the BD-
CATS clustering system [15], which reads data generated
by VPIC or VPIC-IO using the same I/O trace as the BD-
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CATS implementation of the DBSCAN algorithm. In Figure
9, we show the performance of reading a single timestep of
data that were written in previous VPIC experiments. Similar
to the write experiment results, PDC demonstrates better
scalability; it offers comparable read performance with fewer
clients, but outperforms HDF5 and PLFS by up to 5x and
4x, respectively, when there are more than 4K clients.

In Figure 10, we compare the total time to read 5 timesteps
of VPIC data using HDFS5, PLFS, and PDC with asyn-
chronous read optimizations. Similar to the multi-timestep
write results, PDC demonstrates superior performance in all
cases with up to 11 x speedup. We experienced system errors
with the HDF5 read on burst buffer with 15872 clients, thus
there is one missing value in the above two figures.

D. Using Multi-level Storage

It is obvious that the SSD-based burst buffer (BB) pro-
vides better I/O performance than the HDD-based Lustre.
However, typically the total capacity of burst buffer is
much less than that of Lustre. For example, NERSC’s Cori
supercomputer has 28 PB of total Lustre storage disk space,
but only 1.8PB of burst buffer, and each user can only
request 507'B burst buffer allocation. To better utilize the
burst buffer and achieve high I/O throughput, PDC can
distribute the data between burst buffer SSDs and Lustre.
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Figure 11. Write time with part of the data written to faster burst buffer
and the remaining to slower Lustre file system on Cori. The percentage
numbers represent the amount of data written to burst buffer.
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Figure 12. Read time with part of the data from the faster burst buffer and
the remaining from the slower Lustre file system on Cori. The percentage
numbers represent the amount of data read from the burst buffer.

Users can provide hints about which regions to be stored on
faster burst buffers and which to be on Lustre.

Figures 11 and 12 show the write and read performance,
respectively, with different distributions of data on burst
buffer and on Lustre. We use a percentage of data regions
on BB and the remaining on Lustre. We observe that the I/O
time decreases as more data is stored on BB. Based on the
available capacity, PDC provides users the flexibility to use
storage hierarchies efficiently and transparently.

E. Spatial Data Access

Many scientific datasets are written once and read many
times for post-processing. Analysis codes typically access
a small region of large datasets to analyze, where a spatial
region is specified by users. PDC supports efficient spatial
region selection by merging any small regions based on their
locality on storage devices. Figures 13 and 14 show the
elapsed time for different number of clients reading with
different selectivity, ranges from 5% to 20%, on Lustre and
burst buffer. The amount of data accessed increased with the
number of clients. The time in accessing the data is kept low
even at 20% selectivity.

V. RELATED WORK

Most file systems for both single and multiple node
computing systems were designed to comply with POSIX-
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10, which is part of the POSIX standard [16] back in the
late 1980s, and defines the file access API, data model, and
data consistency semantics. In POSIX-IO, data are usually
viewed as byte streams. POSIX-compliant file systems in-
cludes Lustre [2], PVFS [17], GPES [3], NFS [18], etc.
POSIX-IO was not expected to work with highly concurrent
programming models based on distributed memory or a
combination of distributed and shared memory that are now
the norm for HPC systems [19]. It is often regarded as a
major limitation to scalable I/O performance. Deep memory
and storage hierarchies in exascale systems [20], [21] will
exacerbate POSIX-IO problems further.

The FastForward I/O project proposed DAOS, which
provides database-like transactions [8]. RADOS [4], as part
of Ceph [22], is a scalable and reliable object storage
service for petabyte-scale storage clusters. The conventional
parallel I/O stack consists of high-level libraries (HDF5 [23],
NetCDF [24], ADIOS [25], etc.), I/O middleware (MPI-
10 [26], TAPIOCA [27]), and I/O forwarding layer [28].
Several research efforts have focused on relaxing the POSIX
semantics and on defining new data models in these layers.
MPI-IO [26] guarantees that the non-overlapping or non-
concurrent write operations will be handled correctly and
changes to the data are immediately visible only to the
writing process itself. TAPIOCA proposes to optimize col-
lective I/O operations with topology-aware data aggregation
and I/O scheduling. The HDFS5, NetCDF, and ADIOS Ili-

braries provide an array-based data model to organize the
data in semantic manner. The I/O forwarding layer can
help aggregating I/O requests while they are transferred
from client nodes to storage nodes. SDS provides methods
to automatically reorganize data on disk for performance
optimizations.

“Object-based storage” [29] is a generic term used to
describe an abstract data container that consists of many
byte-streams (or objects), each with related attributes. As the
attributes are stored and transferred with the objects, object-
based storage can efficiently express quality-of-service,
transparent performance optimizations, data sharing, and
data security qualities that a storage system can exploit.
Research efforts to implement object-based storage on disks,
in NVRAM, and in memory have been attempted separately,
but none has integrated those efforts across the entire mem-
ory hierarchy.

NVRAM and various implementations of flash memory
storage are portrayed as solutions to alleviate I/O perfor-
mance issues of HPC systems. [30] proposes SSDUP that
redirects data write to burst buffer when it detects random
access that would cause high latency if written to HDDs.
The data in the burst buffer are then flushed to HDDs when
the size is more than half of the burst buffer capacity. [31],
[32] proposes a framework that is able to utilize the deep
memory hierarchy resources to improve read performance
as well as runtime data sharing. In our previous work,
Data Elevator [33] provides automatic data movement across
multi-levels of deep storage systems. In this paper, we
describe a new and full-fledged object-centric storage system
to manage deep storage hierarchy.

Despite repeated exploration of various object-based stor-
age solutions, there is no uniform object management across
all the memory and storage layers of upcoming exascale
systems. Generally, existing research focuses on an indi-
vidual level without considering the presence of the other
layers. When data moves through the hierarchy, semantic
information embedded in objects is lost, resulting in poor
performance. In addition, object-oriented mechanisms for
expressing data structures that can transcend through all the
layers of the hierarchy are unexplored.

VI. CONCLUSIONS AND FUTURE WORK

Current I/O standards, such as POSIX-IO and MPI-IO,
present fundamental challenges in the areas of scalable
metadata operations, semantic-based data movement opti-
mization, support for asynchronous operation, and scalable
support for consistent distributed operations. To overcome
these issues, we designed and developed the prototype of
Proactive Data Containers that provides an object-centric
data model and programming interface, with a distributed
server architecture that scales to a large number of processes.
PDC provides asynchronous I/O and transparent data move-
ment in storage hierarchy with various data and metadata



optimizations to effectively limit the overhead. Experimental
results demonstrate that PDC has a multi-fold performance
speedup compared to HDF5 and PLFS at scale.

Our future work includes adding more autonomous fea-
tures to the PDC servers to track data access patterns and
operations that are performed repeatedly to enable proactive
and topology-aware data movement optimizations without
explicit application intervention. We will also explore meth-
ods to intelligently select the data to be stored in various
layers of memory and storage hierarchy, using user-provided
intent or learning-based approaches, as well as in-transit
proactive data analysis that moves the analysis operations
closer to where the data is stored for improved efficiency.
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