
Context Approach Evaluation Conclusion

Topology-Aware Data Aggregation for Intensive I/O on
Large-Scale Supercomputers

François Tessier∗, Preeti Malakar∗, Venkatram Vishwanath∗,
Emmanuel Jeannot†, Florin Isaila‡

∗Argonne National Laboratory, USA
†Inria Bordeaux Sud-Ouest, France
‡University Carlos III, Spain

November 18, 2016

Context Approach Evaluation Conclusion

Data Movement at Scale

I Computational science simulation such as climate, heart and brain
modelling or cosmology have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers

 0.0001

 0.001

 0.01

 0.1

 1997 2001 2005 2009 2013 2017

R
a
ti

o
 o

f
I/

O
 (

T
B

/s
)

to
 F

lo
p

s
(T

F
/s

)
in

 p
e
rc

e
n

t

Years

IOPS/FLOPS of the #1 system in Top 500

Context Approach Evaluation Conclusion

Complex Architectures

I Complex network topologies: multidimensional tori, dragonfly, ...
I Partitioning of the architecture to reduce I/O interference

IBM BG/Q with I/O nodes (Figure), Cray with LNET nodes
I New tiers of storage/memory for data staging

MCDRAM in KNL, NVRAM, Burst buffer nodes

Compute nodes I/O nodes

Storage
Q

D
R

 In
fin

ib
an

d
sw

itc
h

Bridge nodes

5D Torus network
2 GBps per link 2 GBps per link 4 GBps per link

PowerPC A2, 16 cores
 16 GB of DDR3

GPFS filesystem

IO forwarding daemon
 GPFS client

 Pset
128 nodes

 2 per I/O node

Mira
- 49,152 nodes / 786,432 cores
- 768 TB of memory
- 27 PB of storage, 330 GB/s (GPFS)
- 5D Torus network
- Peak performance: 10 PetaFLOPS

Context Approach Evaluation Conclusion

Two-phase I/O

I Available in MPI I/O implementations such as ROMIO
I Improves I/O performance by writing larger data chunks
I Selects a subset of processes to aggregate data before writing it to the

storage system

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy

X Y Z X Y Z X Y Z X Y Z

Processes

Data

File

P0 P1 P2 P3

Figure: Two-phase I/O mechanism

Context Approach Evaluation Conclusion

Two-phase I/O

I Available in MPI I/O implementations such as ROMIO
I Improves I/O performance by writing larger data chunks
I Selects a subset of processes to aggregate data before writing it to the

storage system

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

File

Y Y Z Z Z Z

1 - Aggr. Phase

P0 P1 P2 P3

P0 P2

Figure: Two-phase I/O mechanism

Context Approach Evaluation Conclusion

Two-phase I/O

I Available in MPI I/O implementations such as ROMIO
I Improves I/O performance by writing larger data chunks
I Selects a subset of processes to aggregate data before writing it to the

storage system

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z

2 - I/O Phase

1 - Aggr. Phase

P0 P1 P2 P3

P0 P2

Figure: Two-phase I/O mechanism

Context Approach Evaluation Conclusion

Outline

1 Context

2 Approach

3 Evaluation

4 Conclusion and Perspectives

Context Approach Evaluation Conclusion

Approach

Improved aggregator placement while taking into account:
I The topology of the architecture
I The data access pattern

Efficient implementation of the two-phase I/O scheme
I Captures the data model and the data layout to optimize the I/O

scheduling
I Pipelining of aggregation phase and I/O phase to optimize data movement
I Leverage one-sided communication
I Uses non-blocking operation to reduce synchronization

Context Approach Evaluation Conclusion

Aggregator Placement - Topology-aware strategy

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v

I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j .

I C1 = max
(
l × d(i ,A) + ω(i,A)

Bi→A

)
, i ∈ VC

I C2 = l × d(A, IO) + ω(A,IO)
|VC |×BA→IO

Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

Objective function:
I TopoAware(A) = min (C1 + C2)

I Computed by each process independently in O(n), n = |VC |

Context Approach Evaluation Conclusion

Aggregator Placement - Topology-aware strategy

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v

I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j .

I C1 = max
(
l × d(i ,A) + ω(i,A)

Bi→A

)
, i ∈ VC

I C2 = l × d(A, IO) + ω(A,IO)
|VC |×BA→IO

Vc : Compute nodes
IO : I/O node
A : Aggregator

C2

Objective function:
I TopoAware(A) = min (C1 + C2)

I Computed by each process independently in O(n), n = |VC |

Context Approach Evaluation Conclusion

Aggregator Placement - Topology-aware strategy

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v

I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j .

I C1 = max
(
l × d(i ,A) + ω(i,A)

Bi→A

)
, i ∈ VC

I C2 = l × d(A, IO) + ω(A,IO)
|VC |×BA→IO

Vc : Compute nodes
IO : I/O node
A : Aggregator

C1

C2

Objective function:
I TopoAware(A) = min (C1 + C2)

I Computed by each process independently in O(n), n = |VC |

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1 1

n x block_size

double-buffering

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1 1

X X X

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1 1

X X X

X Y

RMA operations

Non-blocking
MPI calls

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 1

X X X X Y

Y Y Y

2

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 2

X X X X Y

2

Y Y Y

Z Z Z

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 2

X X X X Y

3

Y Y Y Z Z Z

Z

Context Approach Evaluation Conclusion

Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most

X Y Z X Y Z X Y Z X Y Z

Processes

Data

Aggregator

File

3210

Buffers

Round 2

X X X X Y

3

Y Y Y Z Z Z Z

Context Approach Evaluation Conclusion

Outline

1 Context

2 Approach

3 Evaluation

4 Conclusion and Perspectives

Context Approach Evaluation Conclusion

Micro-benchmark - Placement strategies

I Evaluation on Mira (BG/Q), 512 nodes, 16 ranks/node
I Each rank sends a data buffer chosen randomly between 0 and 2 MB
I Writes to /dev/null of the I/O node (aggregation and I/O phases only)
I Aggregation settings: 16 aggregators, 16 MB buffer size

I Four tested strategies
Shortest path: smallest
distance to the I/O node
Longest path: longest distance
to the I/O node
Greedy: lowest rank in partition
(similar to the default MPICH
strategy)
Topology-aware

Compute node

Bridge node

L

S

S

L

Shortest path

Longest path

Greedy

Topology-Aware

Aggregation
partition

T

G

G

T

Storage system

Aggregator

Context Approach Evaluation Conclusion

Micro-benchmark - Placement strategies

I Evaluation on Mira (BG/Q), 512 nodes, 16 ranks/node
I Each rank sends a data buffer chosen randomly between 0 and 2 MB
I Writes to /dev/null of the I/O node (aggregation and I/O phases only)
I Aggregation settings: 16 aggregators, 16 MB buffer size

Table: Impact of aggregators placement strategy

Strategy I/O Bandwidth (MBps) Aggr. Time/round (ms)
Greedy 1927.45 421.33

Longest path 2202.91 370.40
Shortest path 2484.39 327.08

Topology-Aware 2638.40 310.46

I I/O bandwidth increased by 37% in comparison to the Greedy strategy
and 6% over the Shortest Path approach

Context Approach Evaluation Conclusion

HACC-IO

I I/O part of a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques

I Each process manage particles defined by 9 variables (38 bytes)
XX , YY , ZZ , VX , VY , VZ , phi , pid and mask

I One file per Pset (128 nodes) vs. one single shared file
I Aggregation settings: 16 aggregators per Pset, 16 MB buffer size (MPICH)
I Average and standard deviation on 10 runs

X Y Z X Y Z X Y Z X Y Z

Processes

Data

X Y Z X Y Z X Y Z X Y Z

Data layouts
in file

X X X X Y Y Y Y Z Z Z Z

Array of
structures

Structure
of arrays

0 1 2 3

Figure: Data layouts in HACC-IO

Context Approach Evaluation Conclusion

HACC-IO - 1024 nodes - 16K ranks - Single shared file

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Write BW comparison according to the strategy and the data size
1024 nodes - 16 ranks/node - Single shared file

Topology-aware AoS
MPI I/O AoS

POSIX I/O

Topology-aware SoA
MPI I/O SoA

I Peak is estimated to 22.4 GBps (theoretical: 28.8 GBps)
I Our approach achieves higher performance than the default strategies

5K particles (190 KB) and AoS data layout: 15× faster than MPI I/O

Context Approach Evaluation Conclusion

HACC-IO - 1024 nodes - 16K ranks - Sub-filing (One file per Pset)

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Write BW comparison according to the strategy and the data size
1024 nodes - 16 ranks/node - One file per pset

Topology-aware AoS
MPI I/O AoS

POSIX I/O

Topology-aware SoA
MPI I/O SoA

I Sub-filing is an efficient approach for improved I/O performance
I Our topology-aware strategy achieves 90% of the peak I/O bandwidth

(22.4 GBps)
Significant improvement particularly for small messages

Context Approach Evaluation Conclusion

HACC-IO - 4096 nodes - 65K ranks - Sub-filing (One file per Pset)

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
a
n
d

w
id

th
 (

G
B

p
s)

Data size per rank (MB)

Write BW comparison according to the strategy and the data size
4096 nodes - 16 ranks/node - One file per pset

Topology-aware AoS
MPI I/O AoS

POSIX I/O

Topology-aware SoA
MPI I/O SoA

I Peak is estimated to 89.6 GBps (theoretical: 115.2 GBps)
I 90% of the peak I/O bandwidth achieved as on 1024 nodes
I Improved I/O performance for both AoS and SoA layouts and significant

improvement on smaller messages for the SoA case (up to 43%)

Context Approach Evaluation Conclusion

Outline

1 Context

2 Approach

3 Evaluation

4 Conclusion and Perspectives

Context Approach Evaluation Conclusion

Conclusion and Perspectives

Conclusion
I Optimized two-phase I/O library incorporating

Topology-aware aggregator placement
Optimized data movement and buffering (double-buffering, one-sided
communication, block size awareness)

I Very good performance at scale, outperforming standard approaches
I On the I/O part of a cosmological application, up to 12× improvement on

65K ranks
I Architecture characteristics are critical for performance at scale

Next steps
I Take the routing policy into account
I Incorporate additional data models and layouts (2D, 3D-arrays)
I Hierarchical approach to tackle different tiers of storage

Context Approach Evaluation Conclusion

Conclusion

Acknowledgments
I Argonne Leadership Computing Facility at Argonne National Laboratory
I DOE Office of Science, ASCR
I NCSA-Inria-ANL-BSC-JSC-Riken Joint-Laboratory on Extreme Scale

Computing
I European Union Seventh Framework Program

Context Approach Evaluation Conclusion

Conclusion

Thank you for your attention!
ftessier@anl.gov

Micro-benchmark - #Aggr and buffer size

I Evaluation on Mira (BG/Q), 1024 nodes, 16 ranks/node
I Each rank writes 1 MB
I Write to /dev/null of the I/O node (performance of just aggregation and

I/O phases)

Table: I/O Bandwidth (in MBps) achieved on a simple benchmark with a
topology-aware aggregator placement while varying the number of aggregators and the
buffer size.

#Aggr/Pset Buffer size
8 MB 16 MB 32 MB

8 7652.49 8848.28 9050.71
16 7318.15 8774.58 9331.84
32 6329.95 7797.12 8134.41

	Context
	Approach
	Evaluation
	Conclusion and Perspectives

