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Data Movement at Scale

I Computational science simulation such as climate, heart and brain
modelling or cosmology have large I/O needs

Typically around 10% to 20% of the wall time is spent in I/O

Table: Example of I/O from large simulations

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

I Increasing disparity between computing power and I/O performance in the
largest supercomputers
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Complex Architectures

I Complex network topologies: multidimensional tori, dragonfly, ...
I Partitioning of the architecture to reduce I/O interference

IBM BG/Q with I/O nodes (Figure), Cray with LNET nodes
I New tiers of storage/memory for data staging

MCDRAM in KNL, NVRAM, Burst buffer nodes
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Two-phase I/O

I Available in MPI I/O implementations such as ROMIO
I Improves I/O performance by writing larger data chunks
I Selects a subset of processes to aggregate data before writing it to the

storage system

Limitations:
I Poor for small messages

(from experiments)
I Inefficient aggregator

placement policy
I Fails to take advantage of

data model, data layout
and memory hierarchy
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Figure: Two-phase I/O mechanism
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Approach

Improved aggregator placement while taking into account:
I The topology of the architecture
I The data access pattern

Efficient implementation of the two-phase I/O scheme
I Captures the data model and the data layout to optimize the I/O

scheduling
I Pipelining of aggregation phase and I/O phase to optimize data movement
I Leverage one-sided communication
I Uses non-blocking operation to reduce synchronization
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Aggregator Placement - Topology-aware strategy

I ω(u, v): Amount of data exchanged between
nodes u and v

I d(u, v): Number of hops from nodes u to v

I l : The interconnect latency
I Bi→j : The bandwidth from node i to node j .

I C1 = max
(
l × d(i ,A) + ω(i,A)

Bi→A

)
, i ∈ VC

I C2 = l × d(A, IO) + ω(A,IO)
|VC |×BA→IO

Vc : Compute nodes
IO : I/O node
A  : Aggregator

C1

Objective function:
I TopoAware(A) = min (C1 + C2)

I Computed by each process independently in O(n), n = |VC |
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Algorithm

I Initialization: allocate buffers, create MPI windows, compute tuples
{round, aggregator, buffer} for each process P

Let’s say P1 is the aggregator
I P0, P1 and P2 put data in buffer 1 (round 1) of P1. P3 waits (fence)
I P1 writes buffer 1 in file and aggregates data from all the ranks in buffer 2
I 2nd round. P1 writes buffer 2 and aggregates data from P1, P2 and P3
I and so on...
I Limitations: MPI_Comm_split, one aggr./node at most
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Micro-benchmark - Placement strategies

I Evaluation on Mira (BG/Q), 512 nodes, 16 ranks/node
I Each rank sends a data buffer chosen randomly between 0 and 2 MB
I Writes to /dev/null of the I/O node (aggregation and I/O phases only)
I Aggregation settings: 16 aggregators, 16 MB buffer size

I Four tested strategies
Shortest path: smallest
distance to the I/O node
Longest path: longest distance
to the I/O node
Greedy: lowest rank in partition
(similar to the default MPICH
strategy)
Topology-aware
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Micro-benchmark - Placement strategies

I Evaluation on Mira (BG/Q), 512 nodes, 16 ranks/node
I Each rank sends a data buffer chosen randomly between 0 and 2 MB
I Writes to /dev/null of the I/O node (aggregation and I/O phases only)
I Aggregation settings: 16 aggregators, 16 MB buffer size

Table: Impact of aggregators placement strategy

Strategy I/O Bandwidth (MBps) Aggr. Time/round (ms)
Greedy 1927.45 421.33

Longest path 2202.91 370.40
Shortest path 2484.39 327.08

Topology-Aware 2638.40 310.46

I I/O bandwidth increased by 37% in comparison to the Greedy strategy
and 6% over the Shortest Path approach
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HACC-IO

I I/O part of a large-scale cosmological application simulating the mass
evolution of the universe with particle-mesh techniques

I Each process manage particles defined by 9 variables (38 bytes)
XX , YY , ZZ , VX , VY , VZ , phi , pid and mask

I One file per Pset (128 nodes) vs. one single shared file
I Aggregation settings: 16 aggregators per Pset, 16 MB buffer size (MPICH)
I Average and standard deviation on 10 runs
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HACC-IO - 1024 nodes - 16K ranks - Single shared file
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I Peak is estimated to 22.4 GBps (theoretical: 28.8 GBps)
I Our approach achieves higher performance than the default strategies

5K particles (190 KB) and AoS data layout: 15× faster than MPI I/O
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HACC-IO - 1024 nodes - 16K ranks - Sub-filing (One file per Pset)
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I Sub-filing is an efficient approach for improved I/O performance
I Our topology-aware strategy achieves 90% of the peak I/O bandwidth

(22.4 GBps)
Significant improvement particularly for small messages
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HACC-IO - 4096 nodes - 65K ranks - Sub-filing (One file per Pset)
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I Peak is estimated to 89.6 GBps (theoretical: 115.2 GBps)
I 90% of the peak I/O bandwidth achieved as on 1024 nodes
I Improved I/O performance for both AoS and SoA layouts and significant

improvement on smaller messages for the SoA case (up to 43%)
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Conclusion and Perspectives

Conclusion
I Optimized two-phase I/O library incorporating

Topology-aware aggregator placement
Optimized data movement and buffering (double-buffering, one-sided
communication, block size awareness)

I Very good performance at scale, outperforming standard approaches
I On the I/O part of a cosmological application, up to 12× improvement on

65K ranks
I Architecture characteristics are critical for performance at scale

Next steps
I Take the routing policy into account
I Incorporate additional data models and layouts (2D, 3D-arrays)
I Hierarchical approach to tackle different tiers of storage
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Micro-benchmark - #Aggr and buffer size

I Evaluation on Mira (BG/Q), 1024 nodes, 16 ranks/node
I Each rank writes 1 MB
I Write to /dev/null of the I/O node (performance of just aggregation and

I/O phases)

Table: I/O Bandwidth (in MBps) achieved on a simple benchmark with a
topology-aware aggregator placement while varying the number of aggregators and the
buffer size.

#Aggr/Pset Buffer size
8 MB 16 MB 32 MB

8 7652.49 8848.28 9050.71
16 7318.15 8774.58 9331.84
32 6329.95 7797.12 8134.41
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