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Abstract—Reading and writing data efficiently from storage
systems is critical for high performance data-centric applications.
These I/O systems are being increasingly characterized by com-
plex topologies and deeper memory hierarchies. Effective parallel
I/O solutions are needed to scale applications on current and
future supercomputers. Data aggregation is an efficient approach
consisting of electing some processes in charge of aggregating
data from a set of neighbors and writing the aggregated data
into storage. Thus, the bandwidth use can be optimized while
the contention is reduced. In this work, we take into account the
network topology for mapping aggregators and we propose an
optimized buffering system in order to reduce the aggregation
cost. We validate our approach using micro-benchmarks and
the I/O kernel of a large-scale cosmology simulation. We show
improvements up to 15× faster for I/O operations compared to
a standard implementation of MPI I/O.

I. INTRODUCTION

Optimizing data movement is critical for improved perfor-
mance in high performance computing (HPC). We are wit-
nessing the computational capability of HPC systems growing
rapidly and exascale is now within reach. These systems are
enabling large-scale simulations with higher fidelity and reso-
lutions, among others, to model more complex phenomena.
These simulations are generating and accessing increasing
amounts of data. Often, it is more costly to access, move or
allocate data than to actually process data. During the data
lifetime, efficient access to the storage Input/Output system1

is becoming increasingly critical. The I/O requirements can
be extremely important (as depicted by simulations estimates
given in Table I), however, the current I/O middleware and
system face several challenges with respect to scalability,
contention, latency and diverse application patterns. Also,
given the limited scaling of I/O bandwidth in comparison
to that of the computational capability of HPC systems and
the current expectation that this will be even dire on future
HPC systems, scalable I/O mechanisms that fully exploit the
platform characteristics will be critical.

1Called I/O for the remaining of the paper. Even if an application performs
other kind of I/O (to local disk or the network), here we consider only I/O
to the storage/parallel file system

Thus, to improve the overall efficiency of a high-end parallel
system, novel solutions to cope with efficient and optimized
data access to the I/O system are needed.

TABLE I: I/O requirements of diverse large-scale applications

Scientific domain Simulation Data size
Cosmology Q Continuum 2 PB / simulation
High-Energy Physics Higgs Boson 10 PB / year
Climate / Weather Hurricane 240 TB / simulation

The current large-scale computing infrastructures are often
characterized by network interconnects with complex topolo-
gies (e.g., multidimensional tori, dragonfly). Additionally,
these systems are architected to have a separation of computa-
tion and I/O networks to avoid I/O interference and for func-
tional decoupling. In these systems, I/O accesses require data
movements along several hops of various networks. Hence,
optimizing the data movement requires not only staging the
data within these networks, but also to adapt I/O access pattern
of the applications to the characteristics of the filesystems and
the system topology.

To reduce latency of access and contention to the I/O
system while improving its scalability, a common strategy
(called two-phase I/O) is to aggregate data to a set of compute
nodes (called aggregators) and have only the aggregators
communicate with the I/O system. This approach poses several
challenges such as: where to map aggregators among the
various compute nodes, or, how to optimize communications
to and from these aggregators? In this work, we explore the
two-phase I/O (and specifically the write access) by carefully
placing aggregators taking into account the application’s com-
munication needs (I/O access patterns), the topology of the
underlying interconnect, and effective pipelining of commu-
nications to the aggregators and to the storage. The goal is
to balance the aggregation phase cost with the I/O phase cost
so as to minimize the overall time the application spends in
writing the data to the storage system.

The main contribution of this paper is a novel approach to
optimizing I/O data aggregation on large scale HPC infrastruc-
tures. First, we present a novel aggregator placement optimiza-
tion framework and this framework is used to evaluate various



approaches for data movement, including our topology-aware
method. Next, we discuss a holistic end-to-end approach for
I/O that goes beyond aggregator placement to also include
pipelined aggregation buffering, file system awareness, and
efficient inter-node communication (one-sided) for both the
aggregation and I/O. Finally, we evaluate our approaches at
scale on supercomputers and demonstrate that our approach
significantly outperforms state-of-the-art techniques and rep-
resents a promising approach for scalable I/O on HPC systems.

II. CONTEXT AND MOTIVATION

In this section we start by describing the I/O subsystems
of current and expected large-scale supercomputers. Next, we
discuss the two-phase I/O algorithm used in MPI. Finally, we
highlight the limitations of the current two-phase approach.

A. Storage systems on large-scale supercomputers

The current high-performance system architectures have un-
dergone several improvements in order to tackle the I/O chal-
lenges. The networks topologies, despite being more complex,
tend to reduce the distance between the data and the storage.
While the compute nodes and the I/O infrastructures are com-
monly partitioned to avoid I/O interference, the interconnect
networks bring these two entities closer. This partitioning is
a characteristic of the IBM BG/Q supercomputers where the
I/O nodes are dedicated to the I/O tasks and separated from
the 5D-torus topology [1]. Similarly, Cray has also chosen
a similar strategy for its supercomputers wherein the system
has a subset of nodes called LNET nodes to manage I/O. To
optimize the I/O bandwidth, a dragonfly network has been
implemented reducing the number of hops from a compute
node to the LNET node.

However, the amount of data produced by the applications
remains extremely high and this sole architectural solution is
not sufficient. Writing data out for future analysis suffers an
I/O bandwidth limitation whereas storing data in memory for
in situ analysis is bounded by the amount of available memory.
Similar to solutions to overcome the memory bottleneck
by adding more levels of hierarchy with faster but smaller
memory close to the computing units, an approach to improve
I/O performance is to create new tiers of storage between the
main memory of the compute nodes and the storage system.
Some supercomputers made the choice of allocatable DRAM
by embedding Intel Knights Landing processors. Others chose
to add NVRAM (on-node SSD for instance) to have a trade-
off between cost, bandwidth and capacity. Burst buffer nodes
as the ones used on the Cray Cori infrastructure [2] are also a
method to achieve high I/O performance. In this case, nodes
similar to I/O nodes contain SSDs for data staging.

B. MPI Two-phase I/O

The MPI-2 standard [3] introduced the notion of two-
phase I/O [4] for collective I/O operations. The goal of this
improvement is to optimize the I/O performance by reducing
the network contention, increasing the I/O bandwidth and
simplifying the data access pattern. In two-phase I/O, a subset

of processes called aggregators is responsible for the I/O
phase. These aggregators are elected during the MPI collective
I/O calls. Each aggregator manages a chunk of contiguous
data in file from a subset of processes. For read access,
the aggregators load a part of the file and distribute smaller
chunks of data to a subset of processes. For write access,
an aggregator gathers data from a subset of processes in a
contiguous way and writes the aggregated data to the file
system (through an I/O node if necessary). A toy example
of the two-phase I/O mechanism is shown in Figure 1. In this
example, four processes need to write non-contiguous pieces
of data to a shared file. During the aggregation phase, two
processes elected as aggregators gather these pieces of data
into contiguous chunks in memory (X then Y then Z). Once
this phase is finished, the aggregators effectively write the data
in file (I/O phase).

X Y Z X Y Z X Y Z X Y Z

Processes

Data

AggregatorsX X X X Y Y

Y Y Z Z Z Z FileX X X X Y Y

Y Y Z Z Z Z
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Fig. 1: Two-phase I/O mechanism

C. Limitations

The two-phase I/O technique has several limitations. First,
this two-phase approach works well for large messages but
performs poorly with processes writing small data pieces (e.g.,
less than 1 MB). Secondly, some MPI I/O implementations of
two-phase I/O take into account the topology of the machine
to partition and elect aggregators (e.g. ROMIO considers the
BG/Q topology to partition the number of elected aggregators).
However, they do not use the topology information to propose
an efficient aggregator placement policy. Moreover, beyond the
characteristics of the underlying topology, the a priori details
of the application’s I/O patterns also could help to compute the
placement, however, this is not currently considered. This is
critical for emerging application I/O patterns in multi-physics
applications, analysis outputs, etc. Therefore, in this paper
we address the problem of mapping aggregators taking into
account both the topology and the I/O access pattern of the
application while optimizing performance for short messages.

III. RELATED WORK

Parallel I/O is an active research topic due to the increasing
requirements of applications for data movement to memory
or storage. From a filesystem perspective, GPFS [5] or Lus-
tre [6] are examples of widespread highly scalable parallel
file systems. At a library or application level, parallel I/O



libraries such as MPI I/O, part of the MPI-2 [3] standard,
on top of parallel filesystems is commonly deployed. In these,
collective I/O allows to achieve improved performance. For
this, Chaarawi et al. [7] evaluate various collective I/O
write algorithms. Other approaches to optimizing collective
I/O have also been undertaken using techniques such as
process placement based on the I/O pattern [8] or collective
I/O autotuning with machine learning [9]. One of the de
facto collective I/O algorithm is called two-phase I/O [4].
This method adds a level of hierarchy in collective I/O
phases by aggregating data on a subset of processes before
writing it onto the storage system (more details are given
in section II-B). ROMIO [10] is a popular implementation
of MPI I/O using two-phase I/O included in the widely-used
MPICH library [11]. There have been a number of approaches
to improve this library and the two-phase I/O algorithm [12],
[13], [14]. Approaches based on multi-threading to overlap
aggregation and I/O phases using double buffering have been
studied in [15], [16]. The number of aggregators or the
buffer size needed in collective I/O remains still an open
topic [17]. Finally, the placement of aggregators is a well-
known problem. Certain approaches focus on data locality
and a polynomial time assignment algorithm (the Hungarian
algorithm) to reduce the communication between compute
nodes and aggregators [18]. Others concentrated their efforts
on the specific problem of sparse data patterns on BG/Q by
offering an algorithm to take paths on the network topology
into account [19]. A more general method designed to increase
the I/O bandwidth of collective I/O for the previous version of
IBM supercomputers BG/P has been proposed in [20]. Our
approach differs from the above solutions by attempting to
combine both an optimized buffering system and a topology-
aware quantitative aggregators mapping strategy targeting any
kind of architecture and being extensible to address new
tiers of storage. It does so while also accounting for the
application’s I/O pattern.

IV. OUR APPROACH

Our approach consists of optimizing the data aggregation by
taking into account critical parameters including the topology
of the underlying architecture, the filesystem block size, and
the double buffering with pipelined data movement achieved
via one-sided communications. Thus, we developed a new
data movement optimization library implemented in C++.
This provides two simple functions to the user of parallel
I/O while hiding all complexities of the underlying system.
In fact, from the application developer point of view, using
this aggregation mechanism comes down to describing the
upcoming I/O operations (data sizes and offset in file) through
an initialization function and commit the data instead of
directly calling MPI_File_write in the application. This
section first describes the parameters we identified to optimize
the two-phase I/O method, and, next, discusses implementation
details. Finally, we describe the challenges we address for
scalable performance.

A. Aggregator Placement

The various implementations of the MPI-2 standard propose
a couple of algorithms for two-phase I/O and particularly
for aggregators mapping. In MPICH a strategy consists in
choosing, for n aggregators, the first one on the bridge node
(the compute node connected to the I/O node) and select
the n − 1 remaining ones on different nodes based only on
their rank. For instance, let’s consider 4 aggregators. The first
one will be assigned on the bridge node. For the next three,
the ranks of all processes are sorted and the aggregators are
picked in this order such that no two aggregators are on the
same node. Depending on the process mapping strategy, this
placement can easily choose aggregators on neighboring nodes
and thus create contention, or these could be selected far from
the storage system leading to a large additional latency cost.
Our strategy consists in electing the aggregators whose number
is based on a fixed ratio (i.e. n aggregators per k nodes) in
order to find a compromise between the cost of aggregating
data and the cost of sending data to the storage system (we can
extend this to other types of memory: burst buffers, NVRAM,
...). To achieve this, we create a level of partitioning where
a partition, which is subset of processes, contains processes
that write a contiguous piece of data. Inside each partition, a
process is elected as aggregator according to the topology and
the amount of data to manage. Thus, the number of partitions
corresponds to the number of aggregators. It has to be noted
that a process can be involved in more than one partition. In
this case we consider only the amount of data related to a
given partition.

Figure 2 shows a simple example of partitioning and ag-
gregator election on a grid according to our approach. In this
figure, two more strategies are depicted. Indeed, to evaluate
our topology-aware placement, we implemented three other
methods. These simpler strategies can be described as follow:
• Shortest path: a rank hosted on the node with the smallest

distance to the storage system is elected as an aggregator;
• Longest path: same as the previous strategy except that

the longest distance to the storage system is considered.
• Greedy: the lowest rank in partition is the aggregator is

selected;
As explained before, our topology-aware strategy aims at

taking into account the network topology and the amount
of data exchanged between ranks and their aggregator. More
precisely, we defined an objective function to minimize the
time to perform the I/O and find an efficient aggregator
placement.

Given, for each partition:
• VC : The set of compute nodes performing aggregation in

the partition.
• A ∈ VC : An aggregator chosen among compute nodes
• ω(u, v): The data size exchanged between nodes u and v
• d(u, v): The number of hops between nodes u and v
• IO: The storage system (I/O node) of the partition.
• l: The interconnect latency
• Bi→j : The bandwidth from node i to node j.
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Fig. 2: Data aggregation for I/O: simple partitioning and
aggregator election on a grid with one different strategy per
partition.

For the first step of our strategy, each process involved in
an aggregation partition computes the cost of aggregating data
from all other ranks if it were chosen as the aggregator. This
can be done in a distributed way once all the processes know
the amount of data produced by each of them. We then keep
the maximum cost as all the others will be bounded by this
one. Formally, each process A computes the cost C1:

C1 = max

(
l × d(i, A) +

ω(i, A)

Bi→A

)
, i ∈ VC , i 6= A

The second step consists in computing the cost of sending
the aggregated data to the storage system. The first version of
our model took into account the total amount of aggregated
data to compute this cost. However, while cost C1 considers
a small amount of data (the data sent by the rank with the
maximal cost), C2 considers the sum of the aggregated data.
This creates an imbalance between these two cost and can
make C1 negligible compared to C2. To avoid this, in C2, we
normalize the aggregated data with the number of processes
involved in the aggregation phase to have C1 and C2 of the
same order of magnitude. For each process A, we define the
cost C2 as:

C2 = l × d(A, IO) +
ω(A, IO)

|VC | ×BA→IO

Our topology-aware strategy minimizes the objective func-
tion defined as the sum of the costs C1 and C2. More generally,

this placement policy can be formulated as the solution for
each partition of this objective function:

TopoAware(A) = min (C1 + C2)

This sum is computed by each process independently
in O(n), n = |VC |. Indeed the topology characteristics d,
l, B can be precomputed at start time and the data ex-
change between processes depends on the data distribution
and is accessible in constant time after a preliminary call
to MPI_Allgather. Hence, finding the process having the
minimum cost is done through a MPI_Allreduce with the
MPI_MINLOC operation. All these MPI calls involve meta-
data of very small size compared to the actual data and hence
have a negligible cost compared to sending the application
data.

B. File System Block Size

The block size of a filesystem corresponds to an indivisible
block of memory on disk requested for each read or write
operation, no matter the size of data involved. Thus, writing a
piece of data smaller than the block size implies a lock on a
piece of memory of size blocksize. In the context of parallel
I/O, the multiplication of locks on disks creates an important
bottleneck. To evaluate the impact of the block size, we wrote
a simple benchmark and ran it on a BG/Q supercomputer and
its GPFS high-performance filesystem. This benchmark works
as follow: one process per node writes the same amount of
data to a single shared file at the corresponding offset. The
results are depicted in Figure 3. The purple curve shows the
bandwidth achieved while writing a chunk of data which is
a multiple of the filesystem block size (8 MB in this case).
The green curve shows this bandwidth with the same chunk
of data plus 1 kB. We see that writing a multiple of the block
size can perform up to 3x better than the non-aware case.
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Fig. 3: Benchmark measuring the impact of the filesystem
block size for write operations.

In order to reduce this penalty, our algorithm has been
designed to aggregate and write on an aggregator an amount of
data which is a multiple of the filesystem block size. In other
words, the buffers used by the aggregators to stage data during



the I/O phase are allocated as a multiple of the filesystem
block size. The default buffer size used in MPI two-phase I/O
implementations has this property as well.

C. Pipelined Aggregation Buffers

In order to optimize both the aggregation phase and the
I/O phase, each aggregator manages two buffers and overlaps
the communications. In fact, as the aggregation phase is per-
formed with RMA operations (one-sided communication), no
synchronization is needed between the processes sending data
to the aggregators and the aggregators themselves. Moreover,
the aggregators perform non-blocking independent writes to
the storage system making themselves available for other
operations. In this way the aggregators are able to flush a
full buffer while receiving data in the second one. This loop
is performed as many times as necessary to process the data.
Each instance of buffer filling and flushing is called a round.
A global round is equivalent to the same buffer of all the
aggregators filled (if applicable) and flushed.

D. Algorithm

The Algorithm 1 describes the core function of our aggre-
gation process; that is, the Commit function called by the
processes to write a piece of data. This function is recursive
in order to split a piece of data among different buffers and/or
aggregators. As we initialize our aggregation step with the
upcoming writes, each process knows for each piece of data
the target tuple {round, aggregator, buffer}. The lines 2 to 5
return these values. The chunk size corresponds to the amount
of data to be written. If the piece of data fits in one buffer, this
amount is equal to the data size given as parameter. In case
of data splitting, this amount is smaller than the data size and
an extra round is necessary. The while loop starting from line
8 blocks the processes whose current round is different from
the global round in a fence (barrier in the context of MPI one-
sided communication). Only the processes with the matching
round can lift the barrier. If a process passing this fence is an
aggregator, it flushes the appropriate buffer into the file. Line
16 just puts the data into the target buffer. If the process has
written all its data, it enters a portion of code similar to the
one starting from line 8. Else, we recursively call this Commit
function again while updating the parameters.

E. Challenges at scale

When bringing these optimizations at scale, we needed to
address two challenges in our model. Firstly, the partitioning
phase can appear costly for certain cases. In particular, if
one needs to partition a large MPI communicator, the fact
that a process can be involved with several aggregators limits
the parallelization of this part of the algorithm. In MPI, a
communicator splitting cannot produce sub-communicators
with an intersection. Put it in another way a process cannot
belong to more than one sub-communicator resulting from
a MPI_Comm_split. It implies that we have to perform
the aggregator mapping partly sequentially. Moreover, some

Algorithm 1: Data Aggregation

1 Function Commit (data, size, offset)
2 round← GetRound();
3 aggr ← GetAggregatorRank();
4 chunkSize← GetRoundSize(round);
5 bufferId← globalRound % 2;
77

8 while round 6= globalRound do
9 Fence ();

10 if I am an aggregator then
11 Write Buffer (bufferId);

12 globalRound← globalRound+ 1;
13 bufferId← globalRound % 2;

1515

16 Put (data, chunkSize, offset, aggr, bufferId);
1818

19 if chunkSize = size then
20 while round 6= m round do
21 Fence ();
22 if I am an aggregator then
23 Write Buffer (bufferId);

24 round← round+ 1;

25 else
26 Commit (data+ roundSize, size−

chunkSize, offset+ chunkSize);

MPI_Comm_split implementations can be very unopti-
mized (e..g., on BG/Q) increasing the computation time.
However, even if in most cases this limitation is absent, it has
to be noted that we compute the aggregators mapping once for
the whole application lifetime reducing its impact. Secondly,
it is clear that to avoid contention our implementation needs to
keep at most one aggregator per node. As a consequence, we
have to update a list of nodes already selected as aggregators.
This list is shared among at least a subset of processes.
Because of this, some synchronization steps are necessary.

V. EVALUATION

To validate our approach, we carried out experiments with
both micro-benchmarks as well as with a real application
called HACC from which we extracted the I/O kernel. We con-
ducted our experiments on the Mira supercomputer, an IBM
BG/Q supercomputer located at Argonne National Laboratory.

A. Targeted supercomputer

Mira is an IBM BG/Q supercomputer hosted at Argonne
National Laboratory with 49,152 compute nodes each with 16
hyper-threaded PowerPC A2 cores (1600 MHz). Each node
has 16 GB of main memory. These nodes are interconnected
through a 5D torus high-speed network giving a theoretical
bandwidth of 1.8 GBps per link. The BG/Q architecture
splits the nodes into Psets. A Pset is a subset of nodes



sharing the same I/O node. On Mira, this subset contains
128 nodes including two bridge nodes. A bridge node is a
regular compute node connected to an I/O node (so each I/O
node is connected to two bridge nodes). The Figure 4 shows
this architecture. Note that for all the experiments using our
aggregation strategy, we set the bandwidth between two nodes
to 1.8 GBps (theoretical bandwidth) and the latency to 20 ms
(measured). We compiled the test applications and our library
with GCC v4.4.7 and used the default MPI installation on
Mira, which is based on MPICH2 v1.5.
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Fig. 4: BG/Q architecture

The MPI I/O part is based on ROMIO, an open-source high-
performance implementation. MPI I/O has a highly config-
urable set of parameters; the default number of aggregators
on Mira is set to 16 per Pset and the size of the buffer
employed to aggregate the data is set to 16 MB. The default
aggregator mapping strategy used by ROMIO on BG/Q is the
one described in Section IV-A. The version of MPI-2 hosted
on Mira has been optimized for the BG/Q platform.

B. Evaluation of the placement strategies
We evaluate our topology-aware strategy with a micro-

benchmark and compare this approach to the other approaches
described in section IV-A, namely, greedy, shortest path and
longest path. The micro-benchmark works as follow: Each
rank produces an amount of data distributed randomly between
0 and 2 MB. In order to reduce the file system noise, the
data were sent to the null device of the I/O nodes instead
of a real file. This effectively measures the performance of
just aggregating the data and moving this out to the storage
system. It eliminates any I/O contention, and thus, perfor-
mance degradation at the storage system. The experiments
were carried out on 512 Mira-nodes with 16 ranks per node
(8192 ranks). We set the number of aggregators to 16 for
the MPI_COMM_WORLD communicator (i.e. 4 aggregators per
Pset) to intensify the impact of the placement policy. The
aggregator’s buffer size was set to 16 MB. The results are
shown in Table II and are calculated from 20 runs.

These results illustrate the I/O bandwidth achieved and the
time needed per round for the two-phase I/O step. We notice

TABLE II: Impact of aggregators placement strategy

Strategy I/O Bandwidth (MBps) Aggr. Time/round (ms)
Topology-Aware 2638.40 310.46

Shortest path 2484.39 327.08
Longest path 2202.91 370.40

Greedy 1927.45 421.33

that the topology-aware strategy gives the best bandwidth
compared to the other methods. The shortest-path strategy
offers the second best performance and greedy is the worst.

C. Impact of the number of aggregators and the buffer size

Finding the tradeoff between the number of aggregators and
the buffer size is an open problem [17]. Even though it is not
the main purpose of this paper, it is important to understand
the behavior of our topology-aware aggregation algorithm with
these parameters. For this, we carried out experiments with a
micro-benchmark where we vary the number of aggregators
and the buffer size. We ran these experiments on 1024 Mira-
nodes, with 16 ranks per node, and with 1 MB produced by
each process. The data is again written to the null device of the
I/O nodes to understand the performance of the aggregation
and data movement. Table III presents these results.

TABLE III: I/O Bandwidth (in MBps) achieved by a simple
benchmark with a topology-aware aggregator placement while
varying the number of aggregators and the buffer size.

#Aggr/Pset Buffer size
8 MB 16 MB 32 MB

8 7652.49 8848.28 9050.71
16 7318.15 8774.58 9331.84
32 6329.95 7797.12 8134.41

In these experiments, the third column and row corresponds
to the default parameters set in ROMIO on Mira: 8 aggregators
per Pset and 16 MB of buffer size. With our algorithm, these
settings produce a good I/O bandwidth. Moreover, the best
I/O bandwidth is reached with larger buffers sizes. These
observations are useful for future improvements and tuning.

D. HACC-IO

HACC-IO is the I/O kernel of HACC (Hardware Acceler-
ated Cosmology Code). This large-scale cosmological appli-
cation requires the massive compute power of supercomputers
to simulate the mass evolution of the universe with particle-
mesh techniques. In terms of I/O, every process of a HACC
simulation manages a number of particles. Each particle is
defined by nine variables: XX , Y Y , ZZ, V X , V Y , V Z, phi,
pid and mask, corresponding to the coordinates, the velocity
vector and relevant physics properties. The size of a particle
is 38 bytes. A useful base value is: 25,000 particles require
approximately 1 MB.

1) Impact of data layout: During our experiments, we
observed that ROMIO performs very poorly in case of an array
of structure (AoS) data layout. This layout is the default one
used by HACC. To have a good overview of the performance



with the different standard strategies, we implemented an
alternative data layout based on structures of array (SoA).
Figure 5 describes the differences between these two layouts
in the context of HACC. For all the next experiments with this
application, results for both these layouts are shown (except
for POSIX I/O which performs independent I/O).
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Data layouts
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Fig. 5: Data layouts implemented in HACC

The difference between the two types of organizations in
terms of I/O can be noted. In the case of HACC, where the
particles are written by variables, an AoS design needs more
time to fill an aggregator buffer as it is bounded by the time
necessary to write all the variables from one process. With a
SoA layout, all the processes write the same variables at the
same time. The time required to fill a buffer gets closer to the
time needed to write one variable from one process. Except
in few cases, we observed this impact in our results. It also
explains the performance of ROMIO.

2) Results: The Figures 6 and 7 show respectively the
results when writing to a single file shared by all the processes
and to one file per Pset. These experiments were run on 1024
Mira-nodes and 16 ranks per node. For each strategy, we vary
the number of particles per rank. To conduct fair experiments,
we set the number of aggregators to 16 per Pset and the buffer
size to 16 MB, as the default settings of ROMIO on Mira.

Writing to a single shared file (Figure 6) results in poor
performance in general. On 1024 nodes, the effective peak I/O
bandwidth is estimated to be 22.4 GBps (while the theoretical
bandwidth is 28.8 GBps). The best performance we can
achieve in this case does not exceed 5 GBps. Nevertheless,
only our topology-aware strategy is able to achieve this. We
can also notice that our approach outperforms both POSIX
I/O and MPI I/O regardless of the data size or the data layout.
This difference is particularly substantial on small messages
and tends to decrease while the data size per rank increases.
When 5000 particles are written by a process (∼200 KB),
in the case of an array of structures data layout, our method
provides an I/O bandwidth 15× higher than MPI I/O. This
factor is 4× larger with a different data layout (SoA). As
explained before, we can clearly see the poor performance
obtained with MPI I/O on a specific data layout.

Dividing the output data into several files, also known
as sub-filing, appears to be an attractive solution. The re-
sults presented in Figure 7 are a relevant illustration with
I/O bandwidth close to the peak value. Like the previous
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results, we observe that our strategy based on topology-
aware placement and optimized buffers (block size awareness
and pipelining) achieves much better performance than the
standard approaches. Again, this gap decreases slightly as
the data size increases. However, the I/O bandwidth remains
higher with our method, even with large messages (2 MB per
process).

 0

 5

 10

 15

 20

 25

5000 15000 25000 35000 50000 100000

B
a
n
d

w
id

th
 (

G
B

p
s)

#Particles (38 Bytes/particle)

Write BW comparison according to the strategy and the data size
1024 nodes - 16 ranks/node - One file per pset

Topology-aware AoS
MPI I/O AoS

POSIX I/O

Topology-aware SoA
MPI I/O SoA

Fig. 7: One file per Pset from 1024 nodes (16 ranks/node)



Figure 8 presents results from the same experiments as we
perform weak scaling to 4096 nodes (64K MPI processes).
These results show very similar behavior at scale. As on 1024
nodes, we are able to significantly improve the I/O bandwidth,
irrespective of the data layout in file and particularly on
messages smaller than 2 MB.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated the importance of the
data movement optimizations for intensive I/O operations. In
particular, we developed an I/O library on top of MPI I/O
based on the two-phase I/O scheme and this takes into account
the topology of the infrastructure, an efficient buffering system
and the access patterns of applications. This model achieves
very good performance at scale and outperforms standard
approaches. For the I/O kernel of a cosmological application,
our solution was able to achieve a 15 × improvement over
default parallel I/O implementation. Additionally, we demon-
strated the needs to design an algorithm capable of dealing
with different data layout by overlapping communications.
We demonstrate the necessity to fully exploit the architecture
characteristics in order to achieve performance at scale and
meet the expectations of large-scale simulations. As part of
our future work, we plan to consider routing strategies in
our algorithm. This information could be extremely useful to
reduce performance degradation due to network contention.
Another research track is to extend this aggregation method
to a larger varieties of data patterns (2D or 3D arrays for
example). Finally, we will need to adapt our model to the
various expected tiers of storage and memory.
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